This is a boilerplate function to create automatically the following:
recipe
model specification
workflow
tuned model (grid ect)
calibration tibble and plot
Usage
ts_auto_nnetar(
.data,
.date_col,
.value_col,
.formula,
.rsamp_obj,
.prefix = "ts_nnetar",
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.cv_assess = 12,
.cv_skip = 3,
.cv_slice_limit = 6,
.best_metric = "rmse",
.bootstrap_final = FALSE
)
Arguments
- .data
The data being passed to the function. The time-series object.
- .date_col
The column that holds the datetime.
- .value_col
The column that has the value
- .formula
The formula that is passed to the recipe like
value ~ .
- .rsamp_obj
The rsample splits object
- .prefix
Default is
ts_nnetar
- .tune
Defaults to TRUE, this creates a tuning grid and tuned model.
- .grid_size
If
.tune
is TRUE then the.grid_size
is the size of the tuning grid.- .num_cores
How many cores do you want to use. Default is 1
- .cv_assess
How many observations for assess. See
timetk::time_series_cv()
- .cv_skip
How many observations to skip. See
timetk::time_series_cv()
- .cv_slice_limit
How many slices to return. See
timetk::time_series_cv()
- .best_metric
Default is "rmse". See
modeltime::default_forecast_accuracy_metric_set()
- .bootstrap_final
Not yet implemented.
Details
This uses the modeltime::nnetar_reg()
function with the engine
set to nnetar
.
See also
https://business-science.github.io/modeltime/reference/nnetar_reg.html
Other Boiler_Plate:
ts_auto_arima()
,
ts_auto_arima_xgboost()
,
ts_auto_croston()
,
ts_auto_exp_smoothing()
,
ts_auto_glmnet()
,
ts_auto_lm()
,
ts_auto_mars()
,
ts_auto_prophet_boost()
,
ts_auto_prophet_reg()
,
ts_auto_smooth_es()
,
ts_auto_svm_poly()
,
ts_auto_svm_rbf()
,
ts_auto_theta()
,
ts_auto_xgboost()
Examples
# \donttest{
library(dplyr)
library(timetk)
library(modeltime)
data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)
splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE
)
ts_nnetar <- ts_auto_nnetar(
.data = data,
.num_cores = 2,
.date_col = date_col,
.value_col = value,
.rsamp_obj = splits,
.formula = value ~ .,
.grid_size = 5,
.tune = FALSE
)
#> frequency = 12 observations per 1 year
ts_nnetar$recipe_info
#> $recipe_call
#> recipe(.data = data, .date_col = date_col, .value_col = value,
#> .formula = value ~ ., .rsamp_obj = splits, .tune = FALSE,
#> .grid_size = 5, .num_cores = 2)
#>
#> $recipe_syntax
#> [1] "ts_nnetar_recipe <-"
#> [2] "\n recipe(.data = data, .date_col = date_col, .value_col = value, .formula = value ~ \n ., .rsamp_obj = splits, .tune = FALSE, .grid_size = 5, .num_cores = 2)"
#>
#> $rec_obj
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> outcome: 1
#> predictor: 1
#>
#> ── Operations
#> • Timeseries signature features from: date_col
#> • Novel factor level assignment for: recipes::all_nominal_predictors()
#> • Variable mutation for: tidyselect::vars_select_helpers$where(is.character)
#> • Dummy variables from: recipes::all_nominal()
#> • Zero variance filter on: recipes::all_predictors() and -date_col_index.num
#> • Centering and scaling for: recipes::all_numeric_predictors()
#>
# }