This function is used to quickly create a workflowsets object.
Usage
ts_wfs_mars(
.model_type = "earth",
.recipe_list,
.num_terms = 200,
.prod_degree = 1,
.prune_method = "backward"
)
Arguments
- .model_type
This is where you will set your engine. It uses
parsnip::mars()
under the hood and can take one of the following:"earth"
- .recipe_list
You must supply a list of recipes. list(rec_1, rec_2, ...)
- .num_terms
The number of features that will be retained in the final model, including the intercept.
- .prod_degree
The highest possible interaction degree.
- .prune_method
The pruning method. This is a character, the default is "backward". You can choose from one of the following:
"backward"
"none"
"exhaustive"
"forward"
"seqrep"
"cv"
Details
This function expects to take in the recipes that you want to use in the modeling process. This is an automated workflow process. There are sensible defaults set for the model specification, but if you choose you can set them yourself if you have a good understanding of what they should be. The mode is set to "regression".
This only uses the option set_engine("earth")
and therefore the .model_type
is not needed. The parameter is kept because it is possible in the future that
this could change, and it keeps with the framework of how other functions
are written.
See also
https://workflowsets.tidymodels.org/
https://parsnip.tidymodels.org/reference/mars.html
Other Auto Workflowsets:
ts_wfs_arima_boost()
,
ts_wfs_auto_arima()
,
ts_wfs_ets_reg()
,
ts_wfs_lin_reg()
,
ts_wfs_nnetar_reg()
,
ts_wfs_prophet_reg()
,
ts_wfs_svm_poly()
,
ts_wfs_svm_rbf()
,
ts_wfs_xgboost()
Examples
suppressPackageStartupMessages(library(modeltime))
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rsample))
data <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)
splits <- time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE
)
rec_objs <- ts_auto_recipe(
.data = training(splits)
, .date_col = date_col
, .pred_col = value
)
wf_sets <- ts_wfs_mars("earth", rec_objs)
wf_sets
#> # A workflow set/tibble: 4 × 4
#> wflow_id info option result
#> <chr> <list> <list> <list>
#> 1 rec_base_mars <tibble [1 × 4]> <opts[0]> <list [0]>
#> 2 rec_date_mars <tibble [1 × 4]> <opts[0]> <list [0]>
#> 3 rec_date_fourier_mars <tibble [1 × 4]> <opts[0]> <list [0]>
#> 4 rec_date_fourier_nzv_mars <tibble [1 × 4]> <opts[0]> <list [0]>