healthyverse_tsa

Time Series Analysis, Modeling and Forecasting of the Healthyverse

Packages Steven P. Sanderson II, MPH - Date: 2025-12-07

Introduction

This analysis follows a Nested Modeltime Workflow from modeltime along with using the NNS package. I use this to monitor the downloads of all of my packages:

Get Data

glimpse(downloads_tbl)
Rows: 162,201
Columns: 11
$ date      <date> 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23,…
$ time      <Period> 15H 36M 55S, 11H 26M 39S, 23H 34M 44S, 18H 39M 32S, 9H 0M…
$ date_time <dttm> 2020-11-23 15:36:55, 2020-11-23 11:26:39, 2020-11-23 23:34:…
$ size      <int> 4858294, 4858294, 4858301, 4858295, 361, 4863722, 4864794, 4…
$ r_version <chr> NA, "4.0.3", "3.5.3", "3.5.2", NA, NA, NA, NA, NA, NA, NA, N…
$ r_arch    <chr> NA, "x86_64", "x86_64", "x86_64", NA, NA, NA, NA, NA, NA, NA…
$ r_os      <chr> NA, "mingw32", "mingw32", "linux-gnu", NA, NA, NA, NA, NA, N…
$ package   <chr> "healthyR.data", "healthyR.data", "healthyR.data", "healthyR…
$ version   <chr> "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0…
$ country   <chr> "US", "US", "US", "GB", "US", "US", "DE", "HK", "JP", "US", …
$ ip_id     <int> 2069, 2804, 78827, 27595, 90474, 90474, 42435, 74, 7655, 638…

The last day in the data set is 2025-12-05 23:44:53, the file was birthed on: 2022-07-02 23:58:17.511888, and at report knit time is 3.004378^{4} hours old. Happy analyzing!

Now that we have our data lets take a look at it using the skimr package.

skim(downloads_tbl)
   
Name downloads_tbl
Number of rows 162201
Number of columns 11
_______________________  
Column type frequency:  
character 6
Date 1
numeric 2
POSIXct 1
Timespan 1
________________________  
Group variables None

Data summary

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
r_version 118930 0.27 5 7 0 50 0
r_arch 118930 0.27 1 7 0 6 0
r_os 118930 0.27 7 19 0 24 0
package 0 1.00 7 13 0 8 0
version 0 1.00 5 17 0 62 0
country 15208 0.91 2 2 0 166 0

Variable type: Date

skim_variable n_missing complete_rate min max median n_unique
date 0 1 2020-11-23 2025-12-05 2023-11-03 1832

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
size 0 1 1124686.85 1488502.62 355 27384 310267 2354018 5677952 ▇▁▂▁▁
ip_id 0 1 11338.33 21980.46 1 236 2898 11961 299146 ▇▁▁▁▁

Variable type: POSIXct

skim_variable n_missing complete_rate min max median n_unique
date_time 0 1 2020-11-23 09:00:41 2025-12-05 23:44:53 2023-11-03 09:08:52 102373

Variable type: Timespan

skim_variable n_missing complete_rate min max median n_unique
time 0 1 0 59 12H 6M 46S 60

We can see that the following columns are missing a lot of data and for us are most likely not useful anyways, so we will drop them c(r_version, r_arch, r_os)

Plots

Now lets take a look at a time-series plot of the total daily downloads by package. We will use a log scale and place a vertical line at each version release for each package.

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Now lets take a look at some time series decomposition graphs.

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Seasonal Diagnostics:

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

ACF and PACF Diagnostics:

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Feature Engineering

Now that we have our basic data and a shot of what it looks like, let’s add some features to our data which can be very helpful in modeling. Lets start by making a tibble that is aggregated by the day and package, as we are going to be interested in forecasting the next 4 weeks or 28 days for each package. First lets get our base data.

Call:
stats::lm(formula = .formula, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-146.49  -36.47  -11.11   27.22  819.51 

Coefficients:
                                                     Estimate Std. Error
(Intercept)                                        -1.791e+02  6.058e+01
date                                                1.100e-02  3.211e-03
lag(value, 1)                                       1.102e-01  2.321e-02
lag(value, 7)                                       8.971e-02  2.391e-02
lag(value, 14)                                      7.643e-02  2.389e-02
lag(value, 21)                                      8.058e-02  2.396e-02
lag(value, 28)                                      6.884e-02  2.389e-02
lag(value, 35)                                      5.546e-02  2.394e-02
lag(value, 42)                                      6.197e-02  2.406e-02
lag(value, 49)                                      6.258e-02  2.396e-02
month(date, label = TRUE).L                        -1.084e+01  5.031e+00
month(date, label = TRUE).Q                         1.779e-01  4.961e+00
month(date, label = TRUE).C                        -1.615e+01  4.989e+00
month(date, label = TRUE)^4                        -6.314e+00  4.954e+00
month(date, label = TRUE)^5                        -6.855e+00  4.905e+00
month(date, label = TRUE)^6                         1.163e+00  4.913e+00
month(date, label = TRUE)^7                        -4.552e+00  4.847e+00
month(date, label = TRUE)^8                        -4.039e+00  4.819e+00
month(date, label = TRUE)^9                         2.758e+00  4.832e+00
month(date, label = TRUE)^10                        9.211e-01  4.849e+00
month(date, label = TRUE)^11                       -4.078e+00  4.835e+00
fourier_vec(date, type = "sin", K = 1, period = 7) -1.129e+01  2.217e+00
fourier_vec(date, type = "cos", K = 1, period = 7)  7.259e+00  2.295e+00
                                                   t value Pr(>|t|)    
(Intercept)                                         -2.956 0.003157 ** 
date                                                 3.426 0.000627 ***
lag(value, 1)                                        4.750 2.20e-06 ***
lag(value, 7)                                        3.751 0.000182 ***
lag(value, 14)                                       3.199 0.001404 ** 
lag(value, 21)                                       3.364 0.000785 ***
lag(value, 28)                                       2.881 0.004006 ** 
lag(value, 35)                                       2.317 0.020605 *  
lag(value, 42)                                       2.575 0.010097 *  
lag(value, 49)                                       2.612 0.009079 ** 
month(date, label = TRUE).L                         -2.154 0.031395 *  
month(date, label = TRUE).Q                          0.036 0.971397    
month(date, label = TRUE).C                         -3.237 0.001231 ** 
month(date, label = TRUE)^4                         -1.274 0.202679    
month(date, label = TRUE)^5                         -1.398 0.162404    
month(date, label = TRUE)^6                          0.237 0.812936    
month(date, label = TRUE)^7                         -0.939 0.347768    
month(date, label = TRUE)^8                         -0.838 0.402060    
month(date, label = TRUE)^9                          0.571 0.568212    
month(date, label = TRUE)^10                         0.190 0.849351    
month(date, label = TRUE)^11                        -0.844 0.399036    
fourier_vec(date, type = "sin", K = 1, period = 7)  -5.091 3.95e-07 ***
fourier_vec(date, type = "cos", K = 1, period = 7)   3.163 0.001586 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 59.31 on 1760 degrees of freedom
  (49 observations deleted due to missingness)
Multiple R-squared:   0.23, Adjusted R-squared:  0.2204 
F-statistic:  23.9 on 22 and 1760 DF,  p-value: < 2.2e-16

NNS Forecasting

This is something I have been wanting to try for a while. The NNS package is a great package for forecasting time series data.

NNS GitHub

library(NNS)

data_list <- base_data |>
    select(package, value) |>
    group_split(package)

data_list |>
    imap(
        \(x, idx) {
            obj <- x
            x <- obj |> pull(value) |> tail(7*52)
            train_set_size <- length(x) - 56
            pkg <- obj |> pluck(1) |> unique()
#            sf <- NNS.seas(x, modulo = 7, plot = FALSE)$periods
            seas <- t(
                sapply(
                    1:25, 
                    function(i) c(
                        i,
                        sqrt(
                            mean((
                                NNS.ARMA(x, 
                                         h = 28, 
                                         training.set = train_set_size, 
                                         method = "lin", 
                                         seasonal.factor = i, 
                                         plot=FALSE
                                         ) - tail(x, 28)) ^ 2)))
                    )
                )
            colnames(seas) <- c("Period", "RMSE")
            sf <- seas[which.min(seas[, 2]), 1]
            
            cat(paste0("Package: ", pkg, "\n"))
            NNS.ARMA.optim(
                variable = x,
                h = 28,
                training.set = train_set_size,
                #seasonal.factor = seq(12, 60, 7),
                seasonal.factor = sf,
                pred.int = 0.95,
                plot = TRUE
            )
            title(
                sub = paste0("\n",
                             "Package: ", pkg, " - NNS Optimization")
            )
        }
    )
Package: healthyR
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 12 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 6.65202338339804"
[1] "BEST method = 'lin' PATH MEMBER = c( 12 )"
[1] "BEST lin OBJECTIVE FUNCTION = 6.65202338339804"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 12 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 7.4227499485934"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 12 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 7.4227499485934"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 12 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 6.33030631089571"
[1] "BEST method = 'both' PATH MEMBER = c( 12 )"
[1] "BEST both OBJECTIVE FUNCTION = 6.33030631089571"

Package: healthyR.ai
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 19.6427318071377"
[1] "BEST method = 'lin' PATH MEMBER = c( 3 )"
[1] "BEST lin OBJECTIVE FUNCTION = 19.6427318071377"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 4.20959069058834"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 3 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 4.20959069058834"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 9.20597684497577"
[1] "BEST method = 'both' PATH MEMBER = c( 3 )"
[1] "BEST both OBJECTIVE FUNCTION = 9.20597684497577"

Package: healthyR.data
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 5 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 33.6693503968154"
[1] "BEST method = 'lin' PATH MEMBER = c( 5 )"
[1] "BEST lin OBJECTIVE FUNCTION = 33.6693503968154"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 5 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 11.2897038891863"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 5 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 11.2897038891863"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 5 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 12.6461274907765"
[1] "BEST method = 'both' PATH MEMBER = c( 5 )"
[1] "BEST both OBJECTIVE FUNCTION = 12.6461274907765"

Package: healthyR.ts
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 111.487808874278"
[1] "BEST method = 'lin' PATH MEMBER = c( 1 )"
[1] "BEST lin OBJECTIVE FUNCTION = 111.487808874278"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 99.9041722125259"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 1 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 99.9041722125259"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 261.956598172143"
[1] "BEST method = 'both' PATH MEMBER = c( 1 )"
[1] "BEST both OBJECTIVE FUNCTION = 261.956598172143"

Package: healthyverse
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 12 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 5.83528712399909"
[1] "BEST method = 'lin' PATH MEMBER = c( 12 )"
[1] "BEST lin OBJECTIVE FUNCTION = 5.83528712399909"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 12 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 9.92096738719668"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 12 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 9.92096738719668"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 12 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 8.14933892380053"
[1] "BEST method = 'both' PATH MEMBER = c( 12 )"
[1] "BEST both OBJECTIVE FUNCTION = 8.14933892380053"

Package: RandomWalker
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 14 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 8.16119090785943"
[1] "BEST method = 'lin' PATH MEMBER = c( 14 )"
[1] "BEST lin OBJECTIVE FUNCTION = 8.16119090785943"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 14 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 7.68876117911321"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 14 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 7.68876117911321"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 14 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 7.08249875413898"
[1] "BEST method = 'both' PATH MEMBER = c( 14 )"
[1] "BEST both OBJECTIVE FUNCTION = 7.08249875413898"

Package: tidyAML
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 5 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 18.353612865021"
[1] "BEST method = 'lin' PATH MEMBER = c( 5 )"
[1] "BEST lin OBJECTIVE FUNCTION = 18.353612865021"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 5 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 20.8297652176163"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 5 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 20.8297652176163"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 5 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 17.9414486545205"
[1] "BEST method = 'both' PATH MEMBER = c( 5 )"
[1] "BEST both OBJECTIVE FUNCTION = 17.9414486545205"

Package: TidyDensity
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 8.38071347350636"
[1] "BEST method = 'lin' PATH MEMBER = c( 3 )"
[1] "BEST lin OBJECTIVE FUNCTION = 8.38071347350636"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 254.843564687428"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 3 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 254.843564687428"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 161.842384677563"
[1] "BEST method = 'both' PATH MEMBER = c( 3 )"
[1] "BEST both OBJECTIVE FUNCTION = 161.842384677563"

[[1]]
NULL

[[2]]
NULL

[[3]]
NULL

[[4]]
NULL

[[5]]
NULL

[[6]]
NULL

[[7]]
NULL

[[8]]
NULL

Pre-Processing

Now we are going to do some basic pre-processing.

data_padded_tbl <- base_data %>%
  pad_by_time(
    .date_var  = date,
    .pad_value = 0
  )

# Get log interval and standardization parameters
log_params  <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset      <- log_params$offset

data_liv_tbl <- data_padded_tbl %>%
  # Get log interval transform
  mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)

# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean   <- std_params$mean
std_sd     <- std_params$sd

data_transformed_tbl <- data_liv_tbl %>%
  group_by(package) %>%
  # get standardization
  mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
  tk_augment_fourier(
    .date_var = date,
    .periods  = c(7, 14, 30, 90, 180),
    .K        = 2
  ) %>%
  tk_augment_timeseries_signature(
    .date_var = date
  ) %>%
  ungroup() %>%
  select(-c(value, -year.iso))

Since this is panel data we can follow one of two different modeling strategies. We can search for a global model in the panel data or we can use nested forecasting finding the best model for each of the time series. Since we only have 5 panels, we will use nested forecasting.

To do this we will use the nest_timeseries and split_nested_timeseries functions to create a nested tibble.

horizon <- 4*7

nested_data_tbl <- data_transformed_tbl %>%

    # 0. Filter out column where package is NA
    filter(!is.na(package)) %>%
    
    # 1. Extending: We'll predict n days into the future.
    extend_timeseries(
        .id_var        = package,
        .date_var      = date,
        .length_future = horizon
    ) %>%
    
    # 2. Nesting: We'll group by id, and create a future dataset
    #    that forecasts n days of extended data and
    #    an actual dataset that contains n*2 days
    nest_timeseries(
        .id_var        = package,
        .length_future = horizon
        #.length_actual = horizon*2
    ) %>%
    
   # 3. Splitting: We'll take the actual data and create splits
   #    for accuracy and confidence interval estimation of n das (test)
   #    and the rest is training data
    split_nested_timeseries(
        .length_test = horizon
    )

nested_data_tbl
# A tibble: 8 × 4
  package       .actual_data          .future_data       .splits          
  <fct>         <list>                <list>             <list>           
1 healthyR.data <tibble [1,824 × 50]> <tibble [28 × 50]> <split [1796|28]>
2 healthyR      <tibble [1,815 × 50]> <tibble [28 × 50]> <split [1787|28]>
3 healthyR.ts   <tibble [1,760 × 50]> <tibble [28 × 50]> <split [1732|28]>
4 healthyverse  <tibble [1,731 × 50]> <tibble [28 × 50]> <split [1703|28]>
5 healthyR.ai   <tibble [1,557 × 50]> <tibble [28 × 50]> <split [1529|28]>
6 TidyDensity   <tibble [1,408 × 50]> <tibble [28 × 50]> <split [1380|28]>
7 tidyAML       <tibble [1,015 × 50]> <tibble [28 × 50]> <split [987|28]> 
8 RandomWalker  <tibble [438 × 50]>   <tibble [28 × 50]> <split [410|28]> 

Now it is time to make some recipes and models using the modeltime workflow.

Modeltime Workflow

Recipe Object

recipe_base <- recipe(
  value_trans ~ .
  , data = extract_nested_test_split(nested_data_tbl)
  )

recipe_base

recipe_date <- recipe(
  value_trans ~ date
  , data = extract_nested_test_split(nested_data_tbl)
  )

Models

# Models ------------------------------------------------------------------

# Auto ARIMA --------------------------------------------------------------

model_spec_arima_no_boost <- arima_reg() %>%
  set_engine(engine = "auto_arima")

wflw_auto_arima <- workflow() %>%
  add_recipe(recipe = recipe_date) %>%
  add_model(model_spec_arima_no_boost)

# NNETAR ------------------------------------------------------------------

model_spec_nnetar <- nnetar_reg(
  mode              = "regression"
  , seasonal_period = "auto"
) %>%
  set_engine("nnetar")

wflw_nnetar <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_nnetar)

# TSLM --------------------------------------------------------------------

model_spec_lm <- linear_reg() %>%
  set_engine("lm")

wflw_lm <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_lm)

# MARS --------------------------------------------------------------------

model_spec_mars <- mars(mode = "regression") %>%
  set_engine("earth")

wflw_mars <- workflow() %>%
  add_recipe(recipe = recipe_date) %>%
  add_model(model_spec_mars)

Nested Modeltime Tables

nested_modeltime_tbl <- modeltime_nested_fit(
  # Nested Data
  nested_data = nested_data_tbl,
   control = control_nested_fit(
     verbose = TRUE,
     allow_par = FALSE
   ),
  # Add workflows
  wflw_auto_arima,
  wflw_lm,
  wflw_mars,
  wflw_nnetar
)
nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]

Model Accuracy

nested_modeltime_tbl %>%
  extract_nested_test_accuracy() %>%
  filter(!is.na(package)) %>%
  knitr::kable()
package .model_id .model_desc .type mae mape mase smape rmse rsq
healthyR.data 1 ARIMA Test 0.8437691 99.42201 0.7287151 157.1201 1.0198470 0.0469323
healthyR.data 2 LM Test 0.7931584 175.99518 0.6850055 127.9006 0.9222167 0.0197151
healthyR.data 3 EARTH Test 0.8744510 109.25415 0.7552133 170.7399 1.0406576 0.0031915
healthyR.data 4 NNAR Test 0.7850806 189.69710 0.6780292 116.4043 0.9099128 0.0172959
healthyR 1 ARIMA Test 0.7766232 179.49445 0.7947763 145.4135 1.0164268 0.0011110
healthyR 2 LM Test 0.7104717 460.85924 0.7270786 119.9175 0.8780073 0.0449694
healthyR 3 EARTH Test 0.6499397 488.49336 0.6651316 101.1310 0.8482091 0.0009516
healthyR 4 NNAR Test 0.7674614 389.23537 0.7854003 132.6854 0.9280453 0.0191197
healthyR.ts 1 ARIMA Test 0.7524843 164.02082 0.7565155 148.6750 0.9674465 0.0509100
healthyR.ts 2 LM Test 0.8899913 269.12436 0.8947591 160.0044 1.0631022 0.0001180
healthyR.ts 3 EARTH Test 0.7113556 115.80316 0.7151665 141.7486 0.9315377 0.0046804
healthyR.ts 4 NNAR Test 0.9731767 320.28453 0.9783901 167.8926 1.1355483 0.0018048
healthyverse 1 ARIMA Test 0.8851245 100.51380 0.9601825 152.2649 1.1145885 0.0027465
healthyverse 2 LM Test 0.9193487 148.10379 0.9973089 143.7200 1.0626309 0.0016053
healthyverse 3 EARTH Test 0.8245781 185.23231 0.8945018 111.3741 0.9857874 0.0396456
healthyverse 4 NNAR Test 0.8729017 143.32096 0.9469233 136.6571 1.0453630 0.0086533
healthyR.ai 1 ARIMA Test 0.9752663 103.79897 1.1004585 185.4406 1.1536264 0.0117207
healthyR.ai 2 LM Test 1.1954929 155.20581 1.3489550 164.0372 1.3847690 0.0849085
healthyR.ai 3 EARTH Test 1.4913894 191.98985 1.6828350 178.3417 1.6878221 0.0348017
healthyR.ai 4 NNAR Test 1.1979156 167.12845 1.3516887 159.7321 1.3736177 0.1092835
TidyDensity 1 ARIMA Test 0.9746038 242.87852 0.6462267 149.1447 1.1596522 0.4285271
TidyDensity 2 LM Test 0.8646642 115.59769 0.5733295 153.3752 1.0505231 0.0471042
TidyDensity 3 EARTH Test 1.2692156 362.01250 0.8415738 154.5490 1.4460913 0.0479124
TidyDensity 4 NNAR Test 0.9810813 153.47045 0.6505218 153.0236 1.1549409 0.0102127
tidyAML 1 ARIMA Test 0.7913115 113.31335 0.9395383 181.2607 0.9424719 0.0730200
tidyAML 2 LM Test 0.6986177 215.88895 0.8294814 127.6415 0.8472981 0.0584187
tidyAML 3 EARTH Test 0.9273326 164.73050 1.1010387 183.3334 1.0879849 0.0459931
tidyAML 4 NNAR Test 0.6030920 158.75472 0.7160619 113.8726 0.7818843 0.1073449
RandomWalker 1 ARIMA Test 0.7943307 132.89289 0.7536269 169.1034 0.8673549 0.2114675
RandomWalker 2 LM Test 0.8792741 151.14417 0.8342176 161.0239 0.9889574 0.0001878
RandomWalker 3 EARTH Test 0.9865742 176.60287 0.9360194 165.9071 1.0411936 0.0714650
RandomWalker 4 NNAR Test 0.9423388 168.46947 0.8940507 156.8178 1.0692042 0.0081323

Plot Models

nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  group_by(package) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_show  = FALSE,
    .facet_scales = "free"
  ) +
  theme_minimal() +
  facet_wrap(~ package, nrow = 3) +
  theme(legend.position = "bottom")

Best Model

best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
  modeltime_nested_select_best(
    metric = "rmse",
    minimize = TRUE,
    filter_test_forecasts = TRUE
  )

best_nested_modeltime_tbl %>%
  extract_nested_best_model_report()
# Nested Modeltime Table
  

# A tibble: 8 × 10
  package      .model_id .model_desc .type   mae  mape  mase smape  rmse     rsq
  <fct>            <int> <chr>       <chr> <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl>
1 healthyR.da…         4 NNAR        Test  0.785  190. 0.678  116. 0.910 1.73e-2
2 healthyR             3 EARTH       Test  0.650  488. 0.665  101. 0.848 9.52e-4
3 healthyR.ts          3 EARTH       Test  0.711  116. 0.715  142. 0.932 4.68e-3
4 healthyverse         3 EARTH       Test  0.825  185. 0.895  111. 0.986 3.96e-2
5 healthyR.ai          1 ARIMA       Test  0.975  104. 1.10   185. 1.15  1.17e-2
6 TidyDensity          2 LM          Test  0.865  116. 0.573  153. 1.05  4.71e-2
7 tidyAML              4 NNAR        Test  0.603  159. 0.716  114. 0.782 1.07e-1
8 RandomWalker         1 ARIMA       Test  0.794  133. 0.754  169. 0.867 2.11e-1
best_nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  #filter(!is.na(.model_id)) %>%
  group_by(package) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  facet_wrap(~ package, nrow = 3) +
  theme_minimal() +
  theme(legend.position = "bottom")

Refitting and Future Forecast

Now that we have the best models, we can make our future forecasts.

nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
    modeltime_nested_refit(
        control = control_nested_refit(verbose = TRUE)
    )
nested_modeltime_refit_tbl
# Nested Modeltime Table
  

# A tibble: 8 × 5
  package       .actual_data .future_data .splits           .modeltime_tables 
  <fct>         <list>       <list>       <list>            <list>            
1 healthyR.data <tibble>     <tibble>     <split [1796|28]> <mdl_tm_t [1 × 5]>
2 healthyR      <tibble>     <tibble>     <split [1787|28]> <mdl_tm_t [1 × 5]>
3 healthyR.ts   <tibble>     <tibble>     <split [1732|28]> <mdl_tm_t [1 × 5]>
4 healthyverse  <tibble>     <tibble>     <split [1703|28]> <mdl_tm_t [1 × 5]>
5 healthyR.ai   <tibble>     <tibble>     <split [1529|28]> <mdl_tm_t [1 × 5]>
6 TidyDensity   <tibble>     <tibble>     <split [1380|28]> <mdl_tm_t [1 × 5]>
7 tidyAML       <tibble>     <tibble>     <split [987|28]>  <mdl_tm_t [1 × 5]>
8 RandomWalker  <tibble>     <tibble>     <split [410|28]>  <mdl_tm_t [1 × 5]>
nested_modeltime_refit_tbl %>%
  extract_nested_future_forecast() %>%
  group_by(package) %>%
  mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
    x    = .,
    mean = std_mean,
    sd   = std_sd
  )$standard_inverse_value)) %>%
  mutate(across(.value:.conf_hi, .fns = ~ liiv(
    x = .,
    limit_lower = limit_lower,
    limit_upper = limit_upper,
    offset      = offset
  )$rescaled_v)) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  facet_wrap(~ package, nrow = 3) +
  theme_minimal() +
  theme(legend.position = "bottom")