Steven P. Sanderson II, MPH - Date: 19 February, 2025
This analysis follows a Nested Modeltime Workflow.
glimpse(downloads_tbl)
## Rows: 131,412
## Columns: 11
## $ date <date> 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23,…
## $ time <Period> 15H 36M 55S, 11H 26M 39S, 23H 34M 44S, 18H 39M 32S, 9H 0M…
## $ date_time <dttm> 2020-11-23 15:36:55, 2020-11-23 11:26:39, 2020-11-23 23:34:…
## $ size <int> 4858294, 4858294, 4858301, 4858295, 361, 4863722, 4864794, 4…
## $ r_version <chr> NA, "4.0.3", "3.5.3", "3.5.2", NA, NA, NA, NA, NA, NA, NA, N…
## $ r_arch <chr> NA, "x86_64", "x86_64", "x86_64", NA, NA, NA, NA, NA, NA, NA…
## $ r_os <chr> NA, "mingw32", "mingw32", "linux-gnu", NA, NA, NA, NA, NA, N…
## $ package <chr> "healthyR.data", "healthyR.data", "healthyR.data", "healthyR…
## $ version <chr> "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0…
## $ country <chr> "US", "US", "US", "GB", "US", "US", "DE", "HK", "JP", "US", …
## $ ip_id <int> 2069, 2804, 78827, 27595, 90474, 90474, 42435, 74, 7655, 638…
The last day in the data set is 2025-02-17 23:59:06, the file was birthed on: 2022-07-02 23:58:17.511888, and at report knit time is -2.306001^{4} hours old. Happy analyzing!
Now that we have our data lets take a look at it using the skimr
package.
skim(downloads_tbl)
Name | downloads_tbl |
Number of rows | 131412 |
Number of columns | 11 |
_______________________ | |
Column type frequency: | |
character | 6 |
Date | 1 |
numeric | 2 |
POSIXct | 1 |
Timespan | 1 |
________________________ | |
Group variables | None |
Data summary
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
r_version | 94081 | 0.28 | 5 | 5 | 0 | 45 | 0 |
r_arch | 94081 | 0.28 | 3 | 7 | 0 | 5 | 0 |
r_os | 94081 | 0.28 | 7 | 15 | 0 | 21 | 0 |
package | 0 | 1.00 | 7 | 13 | 0 | 8 | 0 |
version | 0 | 1.00 | 5 | 17 | 0 | 60 | 0 |
country | 11104 | 0.92 | 2 | 2 | 0 | 160 | 0 |
Variable type: Date
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date | 0 | 1 | 2020-11-23 | 2025-02-17 | 2023-05-06 | 1548 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
size | 0 | 1 | 1139637.90 | 1529260.35 | 355 | 14701 | 260558 | 2367832 | 5677952 | ▇▁▂▁▁ |
ip_id | 0 | 1 | 10414.05 | 18423.37 | 1 | 291 | 3086 | 11887 | 209747 | ▇▁▁▁▁ |
Variable type: POSIXct
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date_time | 0 | 1 | 2020-11-23 09:00:41 | 2025-02-17 23:59:06 | 2023-05-06 14:35:49 | 79645 |
Variable type: Timespan
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
time | 0 | 1 | 0 | 59 | 4.5 | 60 |
We can see that the following columns are missing a lot of data and for
us are most likely not useful anyways, so we will drop them
c(r_version, r_arch, r_os)
Now lets take a look at a time-series plot of the total daily downloads by package. We will use a log scale and place a vertical line at each version release for each package.
Now lets take a look at some time series decomposition graphs.
Now that we have our basic data and a shot of what it looks like, let’s
add some features to our data which can be very helpful in modeling.
Lets start by making a tibble
that is aggregated by the day and
package, as we are going to be interested in forecasting the next 4
weeks or 28 days for each package. First lets get our base data.
##
## Call:
## stats::lm(formula = .formula, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -155.50 -34.93 -9.95 27.32 808.56
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -2.071e+02 7.654e+01
## date 1.227e-02 4.059e-03
## lag(value, 1) 1.145e-01 2.511e-02
## lag(value, 7) 8.925e-02 2.606e-02
## lag(value, 14) 1.047e-01 2.612e-02
## lag(value, 21) 5.411e-02 2.636e-02
## lag(value, 28) 6.461e-02 2.624e-02
## lag(value, 35) 7.944e-02 2.634e-02
## lag(value, 42) 5.736e-02 2.640e-02
## lag(value, 49) 8.781e-02 2.634e-02
## month(date, label = TRUE).L -1.244e+01 5.230e+00
## month(date, label = TRUE).Q 2.416e+00 5.179e+00
## month(date, label = TRUE).C -1.109e+01 5.271e+00
## month(date, label = TRUE)^4 -8.855e+00 5.264e+00
## month(date, label = TRUE)^5 -1.166e+01 5.235e+00
## month(date, label = TRUE)^6 -2.430e+00 5.318e+00
## month(date, label = TRUE)^7 -8.126e+00 5.257e+00
## month(date, label = TRUE)^8 -2.891e+00 5.284e+00
## month(date, label = TRUE)^9 4.490e+00 5.293e+00
## month(date, label = TRUE)^10 5.142e+00 5.298e+00
## month(date, label = TRUE)^11 -6.426e+00 5.312e+00
## fourier_vec(date, type = "sin", K = 1, period = 7) -1.175e+01 2.412e+00
## fourier_vec(date, type = "cos", K = 1, period = 7) 7.388e+00 2.538e+00
## t value Pr(>|t|)
## (Intercept) -2.705 0.006903 **
## date 3.024 0.002535 **
## lag(value, 1) 4.561 5.51e-06 ***
## lag(value, 7) 3.425 0.000631 ***
## lag(value, 14) 4.008 6.42e-05 ***
## lag(value, 21) 2.053 0.040264 *
## lag(value, 28) 2.462 0.013915 *
## lag(value, 35) 3.016 0.002601 **
## lag(value, 42) 2.173 0.029953 *
## lag(value, 49) 3.334 0.000878 ***
## month(date, label = TRUE).L -2.379 0.017489 *
## month(date, label = TRUE).Q 0.466 0.640949
## month(date, label = TRUE).C -2.105 0.035491 *
## month(date, label = TRUE)^4 -1.682 0.092734 .
## month(date, label = TRUE)^5 -2.228 0.026013 *
## month(date, label = TRUE)^6 -0.457 0.647784
## month(date, label = TRUE)^7 -1.546 0.122406
## month(date, label = TRUE)^8 -0.547 0.584388
## month(date, label = TRUE)^9 0.848 0.396468
## month(date, label = TRUE)^10 0.971 0.331938
## month(date, label = TRUE)^11 -1.210 0.226521
## fourier_vec(date, type = "sin", K = 1, period = 7) -4.874 1.21e-06 ***
## fourier_vec(date, type = "cos", K = 1, period = 7) 2.911 0.003655 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 58.29 on 1476 degrees of freedom
## (49 observations deleted due to missingness)
## Multiple R-squared: 0.2612, Adjusted R-squared: 0.2502
## F-statistic: 23.72 on 22 and 1476 DF, p-value: < 2.2e-16
Now we are going to do some basic pre-processing.
data_padded_tbl <- base_data %>%
pad_by_time(
.date_var = date,
.pad_value = 0
)
# Get log interval and standardization parameters
log_params <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset <- log_params$offset
data_liv_tbl <- data_padded_tbl %>%
# Get log interval transform
mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)
# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean <- std_params$mean
std_sd <- std_params$sd
data_transformed_tbl <- data_liv_tbl %>%
# get standardization
mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
select(-value)
Since this is panel data we can follow one of two different modeling strategies. We can search for a global model in the panel data or we can use nested forecasting finding the best model for each of the time series. Since we only have 5 panels, we will use nested forecasting.
To do this we will use the nest_timeseries
and
split_nested_timeseries
functions to create a nested tibble
.
horizon <- 4*7
nested_data_tbl <- data_transformed_tbl %>%
# 1. Extending: We'll predict n days into the future.
extend_timeseries(
.id_var = package,
.date_var = date,
.length_future = horizon
) %>%
# 2. Nesting: We'll group by id, and create a future dataset
# that forecasts n days of extended data and
# an actual dataset that contains n*2 days
nest_timeseries(
.id_var = package,
.length_future = horizon
#.length_actual = horizon*2
) %>%
# 3. Splitting: We'll take the actual data and create splits
# for accuracy and confidence interval estimation of n das (test)
# and the rest is training data
split_nested_timeseries(
.length_test = horizon
)
nested_data_tbl
## # A tibble: 9 × 4
## package .actual_data .future_data .splits
## <fct> <list> <list> <list>
## 1 healthyR.data <tibble [1,513 × 2]> <tibble [28 × 2]> <split [1485|28]>
## 2 healthyR <tibble [1,506 × 2]> <tibble [28 × 2]> <split [1478|28]>
## 3 <NA> <tibble [28 × 2]> <tibble [28 × 2]> <split [0|28]>
## 4 healthyR.ts <tibble [1,452 × 2]> <tibble [28 × 2]> <split [1424|28]>
## 5 healthyverse <tibble [1,423 × 2]> <tibble [28 × 2]> <split [1395|28]>
## 6 healthyR.ai <tibble [1,249 × 2]> <tibble [28 × 2]> <split [1221|28]>
## 7 TidyDensity <tibble [1,103 × 2]> <tibble [28 × 2]> <split [1075|28]>
## 8 tidyAML <tibble [718 × 2]> <tibble [28 × 2]> <split [690|28]>
## 9 RandomWalker <tibble [152 × 2]> <tibble [28 × 2]> <split [124|28]>
Now it is time to make some recipes and models using the modeltime workflow.
recipe_base <- recipe(
value_trans ~ date
, data = extract_nested_test_split(nested_data_tbl)
)
recipe_base
recipe_date <- recipe_base %>%
step_mutate(date = as.numeric(date))
# Models ------------------------------------------------------------------
# Auto ARIMA --------------------------------------------------------------
model_spec_arima_no_boost <- arima_reg() %>%
set_engine(engine = "auto_arima")
wflw_auto_arima <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_arima_no_boost)
# NNETAR ------------------------------------------------------------------
model_spec_nnetar <- nnetar_reg(
mode = "regression"
, seasonal_period = "auto"
) %>%
set_engine("nnetar")
wflw_nnetar <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_nnetar)
# TSLM --------------------------------------------------------------------
model_spec_lm <- linear_reg() %>%
set_engine("lm")
wflw_lm <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_lm)
# MARS --------------------------------------------------------------------
model_spec_mars <- mars(mode = "regression") %>%
set_engine("earth")
wflw_mars <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_mars)
nested_modeltime_tbl <- modeltime_nested_fit(
# Nested Data
nested_data = nested_data_tbl,
control = control_nested_fit(
verbose = TRUE,
allow_par = FALSE
),
# Add workflows
wflw_auto_arima,
wflw_lm,
wflw_mars,
wflw_nnetar
)
nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]
nested_modeltime_tbl %>%
extract_nested_test_accuracy() %>%
filter(!is.na(package)) %>%
knitr::kable()
package | .model_id | .model_desc | .type | mae | mape | mase | smape | rmse | rsq |
---|---|---|---|---|---|---|---|---|---|
healthyR.data | 1 | ARIMA | Test | 0.6938860 | 119.92983 | 0.6544509 | 158.21203 | 0.8192178 | 0.0014450 |
healthyR.data | 2 | LM | Test | 0.7516811 | 124.53639 | 0.7089614 | 134.63493 | 0.8905992 | 0.0412348 |
healthyR.data | 3 | EARTH | Test | 0.9136090 | 254.72215 | 0.8616865 | 127.68048 | 1.1223703 | 0.0412348 |
healthyR.data | 4 | NNAR | Test | 0.7107749 | 118.19676 | 0.6703799 | 177.52082 | 0.8141182 | 0.0222088 |
healthyR | 1 | ARIMA | Test | 0.9498607 | 102.15334 | 0.7038716 | 164.60017 | 1.1068751 | 0.0397115 |
healthyR | 2 | LM | Test | 0.9669153 | 104.42765 | 0.7165095 | 193.24986 | 1.1265252 | 0.0038421 |
healthyR | 3 | EARTH | Test | 0.9728274 | 113.00870 | 0.7208905 | 186.91762 | 1.1306085 | 0.0038421 |
healthyR | 4 | NNAR | Test | 0.9601558 | 116.89682 | 0.7115006 | 169.96910 | 1.1071072 | 0.0394294 |
healthyR.ts | 1 | ARIMA | Test | 0.9555539 | 124.32938 | 0.6153775 | 136.81603 | 1.1814976 | 0.0520531 |
healthyR.ts | 2 | LM | Test | 0.9582234 | 143.45365 | 0.6170967 | 130.16795 | 1.1645637 | 0.0520531 |
healthyR.ts | 3 | EARTH | Test | 0.9590184 | 145.50878 | 0.6176087 | 129.63683 | 1.1635232 | 0.0520531 |
healthyR.ts | 4 | NNAR | Test | 0.9452564 | 110.69792 | 0.6087459 | 177.37375 | 1.1957640 | 0.1013214 |
healthyverse | 1 | ARIMA | Test | 0.6412430 | 211.49780 | 0.7350295 | 117.45348 | 0.7593894 | 0.0008138 |
healthyverse | 2 | LM | Test | 0.6631407 | 265.00996 | 0.7601299 | 104.76852 | 0.8333795 | 0.1065519 |
healthyverse | 3 | EARTH | Test | 0.6556654 | 251.76573 | 0.7515613 | 105.74982 | 0.8201938 | 0.1065519 |
healthyverse | 4 | NNAR | Test | 0.6054855 | 146.21948 | 0.6940422 | 120.68438 | 0.7220604 | 0.0830572 |
healthyR.ai | 1 | ARIMA | Test | 0.8336475 | 98.30275 | 0.6886844 | 184.49261 | 0.9821271 | 0.0424199 |
healthyR.ai | 2 | LM | Test | 0.8499566 | 102.22364 | 0.7021576 | 158.72591 | 1.0300391 | 0.0197256 |
healthyR.ai | 3 | EARTH | Test | 0.8595650 | 106.72322 | 0.7100952 | 150.66552 | 1.0512101 | 0.0197256 |
healthyR.ai | 4 | NNAR | Test | 0.8166436 | 97.91304 | 0.6746374 | 160.78820 | 0.9663247 | 0.0847165 |
TidyDensity | 1 | ARIMA | Test | 0.6121270 | 178.42521 | 0.6534670 | 102.37809 | 0.7421730 | 0.1013478 |
TidyDensity | 2 | LM | Test | 0.6637061 | 225.15562 | 0.7085295 | 102.01587 | 0.7890671 | 0.0273446 |
TidyDensity | 3 | EARTH | Test | 0.6280578 | 154.78210 | 0.6704737 | 108.19726 | 0.7681366 | 0.0273446 |
TidyDensity | 4 | NNAR | Test | 0.6302491 | 122.16208 | 0.6728130 | 129.41540 | 0.7774876 | 0.1177124 |
tidyAML | 1 | ARIMA | Test | 0.7017533 | 152.57984 | 0.9052405 | 97.10777 | 0.8867796 | 0.0215421 |
tidyAML | 2 | LM | Test | 0.6911859 | 148.24339 | 0.8916088 | 98.10684 | 0.8704498 | 0.0458501 |
tidyAML | 3 | EARTH | Test | 0.7443252 | 184.68673 | 0.9601570 | 96.77386 | 0.9279765 | 0.0458501 |
tidyAML | 4 | NNAR | Test | 0.7155320 | 154.09237 | 0.9230145 | 101.60166 | 0.9001243 | 0.0175820 |
RandomWalker | 1 | ARIMA | Test | 1.1357472 | 81.13982 | 0.5289721 | 130.61456 | 1.3342698 | 0.2748522 |
RandomWalker | 2 | LM | Test | 1.2884939 | 93.22659 | 0.6001136 | 174.17205 | 1.4899585 | 0.0059124 |
RandomWalker | 3 | EARTH | Test | 1.2818076 | 88.11084 | 0.5969995 | 153.47320 | 1.5080969 | NA |
RandomWalker | 4 | NNAR | Test | 1.4269758 | 162.88745 | 0.6646113 | 160.51620 | 1.6570686 | 0.0220975 |
nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_show = FALSE,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
modeltime_nested_select_best(
metric = "rmse",
minimize = TRUE,
filter_test_forecasts = TRUE
)
best_nested_modeltime_tbl %>%
extract_nested_best_model_report()
## # Nested Modeltime Table
##
## # A tibble: 8 × 10
## package .model_id .model_desc .type mae mape mase smape rmse rsq
## <fct> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 healthyR.data 4 NNAR Test 0.711 118. 0.670 178. 0.814 0.0222
## 2 healthyR 1 ARIMA Test 0.950 102. 0.704 165. 1.11 0.0397
## 3 healthyR.ts 3 EARTH Test 0.959 146. 0.618 130. 1.16 0.0521
## 4 healthyverse 4 NNAR Test 0.605 146. 0.694 121. 0.722 0.0831
## 5 healthyR.ai 4 NNAR Test 0.817 97.9 0.675 161. 0.966 0.0847
## 6 TidyDensity 1 ARIMA Test 0.612 178. 0.653 102. 0.742 0.101
## 7 tidyAML 2 LM Test 0.691 148. 0.892 98.1 0.870 0.0459
## 8 RandomWalker 1 ARIMA Test 1.14 81.1 0.529 131. 1.33 0.275
best_nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
#filter(!is.na(.model_id)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
Now that we have the best models, we can make our future forecasts.
nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
modeltime_nested_refit(
control = control_nested_refit(verbose = TRUE)
)
nested_modeltime_refit_tbl
## # Nested Modeltime Table
##
## # A tibble: 8 × 5
## package .actual_data .future_data .splits .modeltime_tables
## <fct> <list> <list> <list> <list>
## 1 healthyR.data <tibble> <tibble> <split [1485|28]> <mdl_tm_t [1 × 5]>
## 2 healthyR <tibble> <tibble> <split [1478|28]> <mdl_tm_t [1 × 5]>
## 3 healthyR.ts <tibble> <tibble> <split [1424|28]> <mdl_tm_t [1 × 5]>
## 4 healthyverse <tibble> <tibble> <split [1395|28]> <mdl_tm_t [1 × 5]>
## 5 healthyR.ai <tibble> <tibble> <split [1221|28]> <mdl_tm_t [1 × 5]>
## 6 TidyDensity <tibble> <tibble> <split [1075|28]> <mdl_tm_t [1 × 5]>
## 7 tidyAML <tibble> <tibble> <split [690|28]> <mdl_tm_t [1 × 5]>
## 8 RandomWalker <tibble> <tibble> <split [124|28]> <mdl_tm_t [1 × 5]>
nested_modeltime_refit_tbl %>%
extract_nested_future_forecast() %>%
mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
x = .,
mean = std_mean,
sd = std_sd
)$standard_inverse_value)) %>%
mutate(across(.value:.conf_hi, .fns = ~ liiv(
x = .,
limit_lower = limit_lower,
limit_upper = limit_upper,
offset = offset
)$rescaled_v)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")