healthyverse_tsa

Time Series Analysis, Modeling and Forecasting of the Healthyverse

Packages Steven P. Sanderson II, MPH - Date: 2025-11-21

Introduction

This analysis follows a Nested Modeltime Workflow from modeltime along with using the NNS package. I use this to monitor the downloads of all of my packages:

Get Data

glimpse(downloads_tbl)
Rows: 160,769
Columns: 11
$ date      <date> 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23,…
$ time      <Period> 15H 36M 55S, 11H 26M 39S, 23H 34M 44S, 18H 39M 32S, 9H 0M…
$ date_time <dttm> 2020-11-23 15:36:55, 2020-11-23 11:26:39, 2020-11-23 23:34:…
$ size      <int> 4858294, 4858294, 4858301, 4858295, 361, 4863722, 4864794, 4…
$ r_version <chr> NA, "4.0.3", "3.5.3", "3.5.2", NA, NA, NA, NA, NA, NA, NA, N…
$ r_arch    <chr> NA, "x86_64", "x86_64", "x86_64", NA, NA, NA, NA, NA, NA, NA…
$ r_os      <chr> NA, "mingw32", "mingw32", "linux-gnu", NA, NA, NA, NA, NA, N…
$ package   <chr> "healthyR.data", "healthyR.data", "healthyR.data", "healthyR…
$ version   <chr> "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0…
$ country   <chr> "US", "US", "US", "GB", "US", "US", "DE", "HK", "JP", "US", …
$ ip_id     <int> 2069, 2804, 78827, 27595, 90474, 90474, 42435, 74, 7655, 638…

The last day in the data set is 2025-11-19 23:47:25, the file was birthed on: 2025-10-31 10:47:59.603742, and at report knit time is 464.99 hours old. Happy analyzing!

Now that we have our data lets take a look at it using the skimr package.

skim(downloads_tbl)
   
Name downloads_tbl
Number of rows 160769
Number of columns 11
_______________________  
Column type frequency:  
character 6
Date 1
numeric 2
POSIXct 1
Timespan 1
________________________  
Group variables None

Data summary

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
r_version 117891 0.27 5 7 0 50 0
r_arch 117891 0.27 1 7 0 6 0
r_os 117891 0.27 7 19 0 24 0
package 0 1.00 7 13 0 8 0
version 0 1.00 5 17 0 62 0
country 15083 0.91 2 2 0 165 0

Variable type: Date

skim_variable n_missing complete_rate min max median n_unique
date 0 1 2020-11-23 2025-11-19 2023-10-26 1816

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
size 0 1 1124849.3 1490144.95 355 27068 310086 2355045 5677952 ▇▁▂▁▁
ip_id 0 1 11331.8 21991.25 1 230 2903 11961 299146 ▇▁▁▁▁

Variable type: POSIXct

skim_variable n_missing complete_rate min max median n_unique
date_time 0 1 2020-11-23 09:00:41 2025-11-19 23:47:25 2023-10-26 17:35:12 101241

Variable type: Timespan

skim_variable n_missing complete_rate min max median n_unique
time 0 1 0 59 12H 6M 25S 60

We can see that the following columns are missing a lot of data and for us are most likely not useful anyways, so we will drop them c(r_version, r_arch, r_os)

Plots

Now lets take a look at a time-series plot of the total daily downloads by package. We will use a log scale and place a vertical line at each version release for each package.

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Now lets take a look at some time series decomposition graphs.

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Seasonal Diagnostics:

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

ACF and PACF Diagnostics:

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Feature Engineering

Now that we have our basic data and a shot of what it looks like, let’s add some features to our data which can be very helpful in modeling. Lets start by making a tibble that is aggregated by the day and package, as we are going to be interested in forecasting the next 4 weeks or 28 days for each package. First lets get our base data.

Call:
stats::lm(formula = .formula, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-145.79  -36.49  -11.37   27.24  819.39 

Coefficients:
                                                     Estimate Std. Error
(Intercept)                                        -1.929e+02  6.142e+01
date                                                1.174e-02  3.257e-03
lag(value, 1)                                       1.109e-01  2.332e-02
lag(value, 7)                                       8.800e-02  2.406e-02
lag(value, 14)                                      7.913e-02  2.404e-02
lag(value, 21)                                      7.865e-02  2.413e-02
lag(value, 28)                                      6.509e-02  2.405e-02
lag(value, 35)                                      5.778e-02  2.410e-02
lag(value, 42)                                      6.005e-02  2.423e-02
lag(value, 49)                                      6.143e-02  2.417e-02
month(date, label = TRUE).L                        -9.934e+00  5.073e+00
month(date, label = TRUE).Q                         1.076e+00  5.007e+00
month(date, label = TRUE).C                        -1.553e+01  5.024e+00
month(date, label = TRUE)^4                        -6.258e+00  4.997e+00
month(date, label = TRUE)^5                        -7.083e+00  4.955e+00
month(date, label = TRUE)^6                         8.149e-01  4.969e+00
month(date, label = TRUE)^7                        -4.894e+00  4.878e+00
month(date, label = TRUE)^8                        -4.255e+00  4.839e+00
month(date, label = TRUE)^9                         2.594e+00  4.840e+00
month(date, label = TRUE)^10                        8.580e-01  4.855e+00
month(date, label = TRUE)^11                       -4.076e+00  4.841e+00
fourier_vec(date, type = "sin", K = 1, period = 7) -1.155e+01  2.231e+00
fourier_vec(date, type = "cos", K = 1, period = 7)  7.455e+00  2.312e+00
                                                   t value Pr(>|t|)    
(Intercept)                                         -3.141 0.001714 ** 
date                                                 3.605 0.000321 ***
lag(value, 1)                                        4.753 2.17e-06 ***
lag(value, 7)                                        3.658 0.000262 ***
lag(value, 14)                                       3.292 0.001016 ** 
lag(value, 21)                                       3.259 0.001140 ** 
lag(value, 28)                                       2.707 0.006863 ** 
lag(value, 35)                                       2.397 0.016616 *  
lag(value, 42)                                       2.478 0.013300 *  
lag(value, 49)                                       2.541 0.011128 *  
month(date, label = TRUE).L                         -1.958 0.050382 .  
month(date, label = TRUE).Q                          0.215 0.829847    
month(date, label = TRUE).C                         -3.091 0.002030 ** 
month(date, label = TRUE)^4                         -1.252 0.210573    
month(date, label = TRUE)^5                         -1.429 0.153074    
month(date, label = TRUE)^6                          0.164 0.869752    
month(date, label = TRUE)^7                         -1.003 0.315835    
month(date, label = TRUE)^8                         -0.879 0.379374    
month(date, label = TRUE)^9                          0.536 0.592126    
month(date, label = TRUE)^10                         0.177 0.859740    
month(date, label = TRUE)^11                        -0.842 0.399939    
fourier_vec(date, type = "sin", K = 1, period = 7)  -5.176 2.53e-07 ***
fourier_vec(date, type = "cos", K = 1, period = 7)   3.224 0.001286 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 59.38 on 1744 degrees of freedom
  (49 observations deleted due to missingness)
Multiple R-squared:  0.2319,    Adjusted R-squared:  0.2222 
F-statistic: 23.93 on 22 and 1744 DF,  p-value: < 2.2e-16

NNS Forecasting

This is something I have been wanting to try for a while. The NNS package is a great package for forecasting time series data.

NNS GitHub

library(NNS)

data_list <- base_data |>
    select(package, value) |>
    group_split(package)

data_list |>
    imap(
        \(x, idx) {
            obj <- x
            x <- obj |> pull(value) |> tail(7*52)
            train_set_size <- length(x) - 56
            pkg <- obj |> pluck(1) |> unique()
#            sf <- NNS.seas(x, modulo = 7, plot = FALSE)$periods
            seas <- t(
                sapply(
                    1:25, 
                    function(i) c(
                        i,
                        sqrt(
                            mean((
                                NNS.ARMA(x, 
                                         h = 28, 
                                         training.set = train_set_size, 
                                         method = "lin", 
                                         seasonal.factor = i, 
                                         plot=FALSE
                                         ) - tail(x, 28)) ^ 2)))
                    )
                )
            colnames(seas) <- c("Period", "RMSE")
            sf <- seas[which.min(seas[, 2]), 1]
            
            cat(paste0("Package: ", pkg, "\n"))
            NNS.ARMA.optim(
                variable = x,
                h = 28,
                training.set = train_set_size,
                #seasonal.factor = seq(12, 60, 7),
                seasonal.factor = sf,
                pred.int = 0.95,
                plot = TRUE
            )
            title(
                sub = paste0("\n",
                             "Package: ", pkg, " - NNS Optimization")
            )
        }
    )
Package: healthyR
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 25 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 12.899078009383"
[1] "BEST method = 'lin' PATH MEMBER = c( 25 )"
[1] "BEST lin OBJECTIVE FUNCTION = 12.899078009383"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 25 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 6.45585734302479"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 25 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 6.45585734302479"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 25 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 7.95562249885686"
[1] "BEST method = 'both' PATH MEMBER = c( 25 )"
[1] "BEST both OBJECTIVE FUNCTION = 7.95562249885686"

Package: healthyR.ai
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 141.746467648729"
[1] "BEST method = 'lin' PATH MEMBER = c( 1 )"
[1] "BEST lin OBJECTIVE FUNCTION = 141.746467648729"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 24.3196811228587"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 1 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 24.3196811228587"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 35.6612645641263"
[1] "BEST method = 'both' PATH MEMBER = c( 1 )"
[1] "BEST both OBJECTIVE FUNCTION = 35.6612645641263"

Package: healthyR.data
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 328625.058437315"
[1] "BEST method = 'lin' PATH MEMBER = c( 1 )"
[1] "BEST lin OBJECTIVE FUNCTION = 328625.058437315"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 133.196089455299"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 1 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 133.196089455299"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 261.390827882138"
[1] "BEST method = 'both' PATH MEMBER = c( 1 )"
[1] "BEST both OBJECTIVE FUNCTION = 261.390827882138"

Package: healthyR.ts
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 11 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 20.8047182923878"
[1] "BEST method = 'lin' PATH MEMBER = c( 11 )"
[1] "BEST lin OBJECTIVE FUNCTION = 20.8047182923878"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 11 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 11.5896207002355"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 11 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 11.5896207002355"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 11 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 12.7948758905471"
[1] "BEST method = 'both' PATH MEMBER = c( 11 )"
[1] "BEST both OBJECTIVE FUNCTION = 12.7948758905471"

Package: healthyverse
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 25 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 4.43481767653326"
[1] "BEST method = 'lin' PATH MEMBER = c( 25 )"
[1] "BEST lin OBJECTIVE FUNCTION = 4.43481767653326"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 25 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 4.43241897436715"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 25 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 4.43241897436715"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 25 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 3.85130988197239"
[1] "BEST method = 'both' PATH MEMBER = c( 25 )"
[1] "BEST both OBJECTIVE FUNCTION = 3.85130988197239"

Package: RandomWalker
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 11 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 8.24365562745494"
[1] "BEST method = 'lin' PATH MEMBER = c( 11 )"
[1] "BEST lin OBJECTIVE FUNCTION = 8.24365562745494"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 11 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 8.64059884419028"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 11 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 8.64059884419028"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 11 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 8.53612504361394"
[1] "BEST method = 'both' PATH MEMBER = c( 11 )"
[1] "BEST both OBJECTIVE FUNCTION = 8.53612504361394"

Package: tidyAML
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 10 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 56.3361330782767"
[1] "BEST method = 'lin' PATH MEMBER = c( 10 )"
[1] "BEST lin OBJECTIVE FUNCTION = 56.3361330782767"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 10 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 11.4632125506106"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 10 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 11.4632125506106"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 10 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 16.6795462408972"
[1] "BEST method = 'both' PATH MEMBER = c( 10 )"
[1] "BEST both OBJECTIVE FUNCTION = 16.6795462408972"

Package: TidyDensity
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 477.982835797126"
[1] "BEST method = 'lin' PATH MEMBER = c( 1 )"
[1] "BEST lin OBJECTIVE FUNCTION = 477.982835797126"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 169.410793992195"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 1 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 169.410793992195"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 251.011394537871"
[1] "BEST method = 'both' PATH MEMBER = c( 1 )"
[1] "BEST both OBJECTIVE FUNCTION = 251.011394537871"

[[1]]
NULL

[[2]]
NULL

[[3]]
NULL

[[4]]
NULL

[[5]]
NULL

[[6]]
NULL

[[7]]
NULL

[[8]]
NULL

Pre-Processing

Now we are going to do some basic pre-processing.

data_padded_tbl <- base_data %>%
  pad_by_time(
    .date_var  = date,
    .pad_value = 0
  )

# Get log interval and standardization parameters
log_params  <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset      <- log_params$offset

data_liv_tbl <- data_padded_tbl %>%
  # Get log interval transform
  mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)

# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean   <- std_params$mean
std_sd     <- std_params$sd

data_transformed_tbl <- data_liv_tbl %>%
  group_by(package) %>%
  # get standardization
  mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
  tk_augment_fourier(
    .date_var = date,
    .periods  = c(7, 14, 30, 90, 180),
    .K        = 2
  ) %>%
  tk_augment_timeseries_signature(
    .date_var = date
  ) %>%
  ungroup() %>%
  select(-c(value, -year.iso))

Since this is panel data we can follow one of two different modeling strategies. We can search for a global model in the panel data or we can use nested forecasting finding the best model for each of the time series. Since we only have 5 panels, we will use nested forecasting.

To do this we will use the nest_timeseries and split_nested_timeseries functions to create a nested tibble.

horizon <- 4*7

nested_data_tbl <- data_transformed_tbl %>%

    # 0. Filter out column where package is NA
    filter(!is.na(package)) %>%
    
    # 1. Extending: We'll predict n days into the future.
    extend_timeseries(
        .id_var        = package,
        .date_var      = date,
        .length_future = horizon
    ) %>%
    
    # 2. Nesting: We'll group by id, and create a future dataset
    #    that forecasts n days of extended data and
    #    an actual dataset that contains n*2 days
    nest_timeseries(
        .id_var        = package,
        .length_future = horizon
        #.length_actual = horizon*2
    ) %>%
    
   # 3. Splitting: We'll take the actual data and create splits
   #    for accuracy and confidence interval estimation of n das (test)
   #    and the rest is training data
    split_nested_timeseries(
        .length_test = horizon
    )

nested_data_tbl
# A tibble: 8 × 4
  package       .actual_data          .future_data       .splits          
  <fct>         <list>                <list>             <list>           
1 healthyR.data <tibble [1,808 × 50]> <tibble [28 × 50]> <split [1780|28]>
2 healthyR      <tibble [1,799 × 50]> <tibble [28 × 50]> <split [1771|28]>
3 healthyR.ts   <tibble [1,744 × 50]> <tibble [28 × 50]> <split [1716|28]>
4 healthyverse  <tibble [1,715 × 50]> <tibble [28 × 50]> <split [1687|28]>
5 healthyR.ai   <tibble [1,541 × 50]> <tibble [28 × 50]> <split [1513|28]>
6 TidyDensity   <tibble [1,392 × 50]> <tibble [28 × 50]> <split [1364|28]>
7 tidyAML       <tibble [999 × 50]>   <tibble [28 × 50]> <split [971|28]> 
8 RandomWalker  <tibble [422 × 50]>   <tibble [28 × 50]> <split [394|28]> 

Now it is time to make some recipes and models using the modeltime workflow.

Modeltime Workflow

Recipe Object

recipe_base <- recipe(
  value_trans ~ .
  , data = extract_nested_test_split(nested_data_tbl)
  )

recipe_base

recipe_date <- recipe(
  value_trans ~ date
  , data = extract_nested_test_split(nested_data_tbl)
  )

Models

# Models ------------------------------------------------------------------

# Auto ARIMA --------------------------------------------------------------

model_spec_arima_no_boost <- arima_reg() %>%
  set_engine(engine = "auto_arima")

wflw_auto_arima <- workflow() %>%
  add_recipe(recipe = recipe_date) %>%
  add_model(model_spec_arima_no_boost)

# NNETAR ------------------------------------------------------------------

model_spec_nnetar <- nnetar_reg(
  mode              = "regression"
  , seasonal_period = "auto"
) %>%
  set_engine("nnetar")

wflw_nnetar <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_nnetar)

# TSLM --------------------------------------------------------------------

model_spec_lm <- linear_reg() %>%
  set_engine("lm")

wflw_lm <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_lm)

# MARS --------------------------------------------------------------------

model_spec_mars <- mars(mode = "regression") %>%
  set_engine("earth")

wflw_mars <- workflow() %>%
  add_recipe(recipe = recipe_date) %>%
  add_model(model_spec_mars)

Nested Modeltime Tables

nested_modeltime_tbl <- modeltime_nested_fit(
  # Nested Data
  nested_data = nested_data_tbl,
   control = control_nested_fit(
     verbose = TRUE,
     allow_par = FALSE
   ),
  # Add workflows
  wflw_auto_arima,
  wflw_lm,
  wflw_mars,
  wflw_nnetar
)
nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]

Model Accuracy

nested_modeltime_tbl %>%
  extract_nested_test_accuracy() %>%
  filter(!is.na(package)) %>%
  knitr::kable()
package .model_id .model_desc .type mae mape mase smape rmse rsq
healthyR.data 1 ARIMA Test 0.7670347 108.96610 0.6960527 163.1357 0.9383914 0.0165474
healthyR.data 2 LM Test 0.8064269 170.58255 0.7317995 144.9154 0.9145595 0.0021029
healthyR.data 3 NULL NA NA NA NA NA NA NA
healthyR.data 4 NNAR Test 0.8789529 243.36872 0.7976138 154.4925 0.9682275 0.0035503
healthyR 1 ARIMA Test 0.7589691 93.41715 0.7191014 163.3105 1.0526849 0.0131450
healthyR 2 LM Test 0.8031627 342.51019 0.7609735 142.0607 0.9717747 0.0540753
healthyR 3 NULL NA NA NA NA NA NA NA
healthyR 4 NNAR Test 0.8141327 277.68656 0.7713674 147.9877 1.0245663 0.0270289
healthyR.ts 1 ARIMA Test 0.6998091 114.45790 0.5866782 149.5112 0.9665861 0.1182587
healthyR.ts 2 LM Test 0.9087308 359.86240 0.7618256 166.4695 1.1163386 0.0004680
healthyR.ts 3 NULL NA NA NA NA NA NA NA
healthyR.ts 4 NNAR Test 0.9735180 437.44835 0.8161394 166.3911 1.1521169 0.0018316
healthyverse 1 ARIMA Test 0.6192494 96.42625 0.8719198 143.9649 0.8341094 0.0397532
healthyverse 2 LM Test 0.8284835 215.12307 1.1665269 158.8880 0.9420605 0.0033741
healthyverse 3 NULL NA NA NA NA NA NA NA
healthyverse 4 NNAR Test 0.8167735 219.60586 1.1500390 151.6104 0.9525531 0.0014112
healthyR.ai 1 ARIMA Test 0.6396387 99.98062 0.8418496 173.3020 0.9044671 0.0008725
healthyR.ai 2 LM Test 0.7733788 252.82399 1.0178693 157.3297 0.9335255 0.0703493
healthyR.ai 3 NULL NA NA NA NA NA NA NA
healthyR.ai 4 NNAR Test 0.7494834 241.50250 0.9864198 146.1212 0.8973307 0.0894583
TidyDensity 1 ARIMA Test 0.9477972 338.26245 0.6129667 134.1729 1.0875021 0.1448263
TidyDensity 2 LM Test 0.8797928 157.53015 0.5689864 148.4995 1.0769541 0.0044833
TidyDensity 3 NULL NA NA NA NA NA NA NA
TidyDensity 4 NNAR Test 0.9679495 211.24352 0.6259998 160.9762 1.1378034 0.0180565
tidyAML 1 ARIMA Test 0.7934918 120.44666 0.8815158 175.4149 0.9896338 0.0325714
tidyAML 2 LM Test 0.7485934 140.44823 0.8316368 135.9207 0.9419760 0.0234691
tidyAML 3 NULL NA NA NA NA NA NA NA
tidyAML 4 NNAR Test 0.6553459 113.31429 0.7280451 129.0581 0.8563175 0.1412180
RandomWalker 1 ARIMA Test 0.7072695 117.87896 0.5812580 153.0881 0.8016743 0.2113436
RandomWalker 2 LM Test 0.8573588 182.79460 0.7046065 155.1721 0.9259880 0.0009522
RandomWalker 3 NULL NA NA NA NA NA NA NA
RandomWalker 4 NNAR Test 1.0027393 232.94176 0.8240852 158.3198 1.0965402 0.0456052

Plot Models

nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  group_by(package) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_show  = FALSE,
    .facet_scales = "free"
  ) +
  theme_minimal() +
  facet_wrap(~ package, nrow = 3) +
  theme(legend.position = "bottom")

Best Model

best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
  modeltime_nested_select_best(
    metric = "rmse",
    minimize = TRUE,
    filter_test_forecasts = TRUE
  )

best_nested_modeltime_tbl %>%
  extract_nested_best_model_report()
# Nested Modeltime Table
  

# A tibble: 8 × 10
  package      .model_id .model_desc .type   mae  mape  mase smape  rmse     rsq
  <fct>            <int> <chr>       <chr> <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl>
1 healthyR.da…         2 LM          Test  0.806 171.  0.732  145. 0.915 0.00210
2 healthyR             2 LM          Test  0.803 343.  0.761  142. 0.972 0.0541 
3 healthyR.ts          1 ARIMA       Test  0.700 114.  0.587  150. 0.967 0.118  
4 healthyverse         1 ARIMA       Test  0.619  96.4 0.872  144. 0.834 0.0398 
5 healthyR.ai          4 NNAR        Test  0.749 242.  0.986  146. 0.897 0.0895 
6 TidyDensity          2 LM          Test  0.880 158.  0.569  148. 1.08  0.00448
7 tidyAML              4 NNAR        Test  0.655 113.  0.728  129. 0.856 0.141  
8 RandomWalker         1 ARIMA       Test  0.707 118.  0.581  153. 0.802 0.211  
best_nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  #filter(!is.na(.model_id)) %>%
  group_by(package) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  facet_wrap(~ package, nrow = 3) +
  theme_minimal() +
  theme(legend.position = "bottom")

Refitting and Future Forecast

Now that we have the best models, we can make our future forecasts.

nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
    modeltime_nested_refit(
        control = control_nested_refit(verbose = TRUE)
    )
nested_modeltime_refit_tbl
# Nested Modeltime Table
  

# A tibble: 8 × 5
  package       .actual_data .future_data .splits           .modeltime_tables 
  <fct>         <list>       <list>       <list>            <list>            
1 healthyR.data <tibble>     <tibble>     <split [1780|28]> <mdl_tm_t [1 × 5]>
2 healthyR      <tibble>     <tibble>     <split [1771|28]> <mdl_tm_t [1 × 5]>
3 healthyR.ts   <tibble>     <tibble>     <split [1716|28]> <mdl_tm_t [1 × 5]>
4 healthyverse  <tibble>     <tibble>     <split [1687|28]> <mdl_tm_t [1 × 5]>
5 healthyR.ai   <tibble>     <tibble>     <split [1513|28]> <mdl_tm_t [1 × 5]>
6 TidyDensity   <tibble>     <tibble>     <split [1364|28]> <mdl_tm_t [1 × 5]>
7 tidyAML       <tibble>     <tibble>     <split [971|28]>  <mdl_tm_t [1 × 5]>
8 RandomWalker  <tibble>     <tibble>     <split [394|28]>  <mdl_tm_t [1 × 5]>
nested_modeltime_refit_tbl %>%
  extract_nested_future_forecast() %>%
  group_by(package) %>%
  mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
    x    = .,
    mean = std_mean,
    sd   = std_sd
  )$standard_inverse_value)) %>%
  mutate(across(.value:.conf_hi, .fns = ~ liiv(
    x = .,
    limit_lower = limit_lower,
    limit_upper = limit_upper,
    offset      = offset
  )$rescaled_v)) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  facet_wrap(~ package, nrow = 3) +
  theme_minimal() +
  theme(legend.position = "bottom")