Steven P. Sanderson II, MPH - Date: 16 January, 2025
This analysis follows a Nested Modeltime Workflow.
glimpse(downloads_tbl)
## Rows: 127,151
## Columns: 11
## $ date <date> 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23,…
## $ time <Period> 15H 36M 55S, 11H 26M 39S, 23H 34M 44S, 18H 39M 32S, 9H 0M…
## $ date_time <dttm> 2020-11-23 15:36:55, 2020-11-23 11:26:39, 2020-11-23 23:34:…
## $ size <int> 4858294, 4858294, 4858301, 4858295, 361, 4863722, 4864794, 4…
## $ r_version <chr> NA, "4.0.3", "3.5.3", "3.5.2", NA, NA, NA, NA, NA, NA, NA, N…
## $ r_arch <chr> NA, "x86_64", "x86_64", "x86_64", NA, NA, NA, NA, NA, NA, NA…
## $ r_os <chr> NA, "mingw32", "mingw32", "linux-gnu", NA, NA, NA, NA, NA, N…
## $ package <chr> "healthyR.data", "healthyR.data", "healthyR.data", "healthyR…
## $ version <chr> "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0…
## $ country <chr> "US", "US", "US", "GB", "US", "US", "DE", "HK", "JP", "US", …
## $ ip_id <int> 2069, 2804, 78827, 27595, 90474, 90474, 42435, 74, 7655, 638…
The last day in the data set is 2025-01-14 21:02:35, the file was birthed on: 2024-08-07 07:35:44, and at report knit time is -3849.45 hours old. Happy analyzing!
Now that we have our data lets take a look at it using the skimr
package.
skim(downloads_tbl)
Name | downloads_tbl |
Number of rows | 127151 |
Number of columns | 11 |
_______________________ | |
Column type frequency: | |
character | 6 |
Date | 1 |
numeric | 2 |
POSIXct | 1 |
Timespan | 1 |
________________________ | |
Group variables | None |
Data summary
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
r_version | 90453 | 0.29 | 5 | 5 | 0 | 45 | 0 |
r_arch | 90453 | 0.29 | 3 | 7 | 0 | 5 | 0 |
r_os | 90453 | 0.29 | 7 | 15 | 0 | 21 | 0 |
package | 0 | 1.00 | 7 | 13 | 0 | 8 | 0 |
version | 0 | 1.00 | 5 | 17 | 0 | 60 | 0 |
country | 10831 | 0.91 | 2 | 2 | 0 | 160 | 0 |
Variable type: Date
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date | 0 | 1 | 2020-11-23 | 2025-01-14 | 2023-04-19 | 1514 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
size | 0 | 1 | 1145128.76 | 1533884.40 | 355 | 14701 | 260378 | 2367940.5 | 5677952 | ▇▁▂▁▁ |
ip_id | 0 | 1 | 10346.78 | 18030.87 | 1 | 317 | 3091 | 11836.5 | 143633 | ▇▁▁▁▁ |
Variable type: POSIXct
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date_time | 0 | 1 | 2020-11-23 09:00:41 | 2025-01-14 21:02:35 | 2023-04-19 21:36:07 | 77000 |
Variable type: Timespan
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
time | 0 | 1 | 0 | 59 | 12H 5M 40S | 60 |
We can see that the following columns are missing a lot of data and for
us are most likely not useful anyways, so we will drop them
c(r_version, r_arch, r_os)
Now lets take a look at a time-series plot of the total daily downloads by package. We will use a log scale and place a vertical line at each version release for each package.
Now lets take a look at some time series decomposition graphs.
Now that we have our basic data and a shot of what it looks like, let’s
add some features to our data which can be very helpful in modeling.
Lets start by making a tibble
that is aggregated by the day and
package, as we are going to be interested in forecasting the next 4
weeks or 28 days for each package. First lets get our base data.
##
## Call:
## stats::lm(formula = .formula, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -154.97 -35.15 -9.73 26.97 806.04
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -187.75756 78.50460
## date 0.01125 0.00416
## lag(value, 1) 0.12551 0.02536
## lag(value, 7) 0.09053 0.02630
## lag(value, 14) 0.10668 0.02641
## lag(value, 21) 0.04904 0.02651
## lag(value, 28) 0.06657 0.02637
## lag(value, 35) 0.07176 0.02648
## lag(value, 42) 0.05172 0.02655
## lag(value, 49) 0.09355 0.02639
## month(date, label = TRUE).L -11.23134 5.37265
## month(date, label = TRUE).Q 2.14704 5.22484
## month(date, label = TRUE).C -11.34747 5.29884
## month(date, label = TRUE)^4 -7.56924 5.31564
## month(date, label = TRUE)^5 -12.93343 5.30074
## month(date, label = TRUE)^6 -0.93640 5.38048
## month(date, label = TRUE)^7 -9.08921 5.27984
## month(date, label = TRUE)^8 -2.21977 5.27662
## month(date, label = TRUE)^9 4.15911 5.26756
## month(date, label = TRUE)^10 5.18725 5.26729
## month(date, label = TRUE)^11 -6.26663 5.28076
## fourier_vec(date, type = "sin", K = 1, period = 7) -11.72016 2.42309
## fourier_vec(date, type = "cos", K = 1, period = 7) 7.29394 2.54196
## t value Pr(>|t|)
## (Intercept) -2.392 0.016899 *
## date 2.705 0.006908 **
## lag(value, 1) 4.949 8.33e-07 ***
## lag(value, 7) 3.442 0.000594 ***
## lag(value, 14) 4.039 5.64e-05 ***
## lag(value, 21) 1.850 0.064521 .
## lag(value, 28) 2.524 0.011700 *
## lag(value, 35) 2.710 0.006809 **
## lag(value, 42) 1.948 0.051662 .
## lag(value, 49) 3.544 0.000406 ***
## month(date, label = TRUE).L -2.090 0.036751 *
## month(date, label = TRUE).Q 0.411 0.681185
## month(date, label = TRUE).C -2.142 0.032401 *
## month(date, label = TRUE)^4 -1.424 0.154676
## month(date, label = TRUE)^5 -2.440 0.014810 *
## month(date, label = TRUE)^6 -0.174 0.861861
## month(date, label = TRUE)^7 -1.721 0.085376 .
## month(date, label = TRUE)^8 -0.421 0.674051
## month(date, label = TRUE)^9 0.790 0.429908
## month(date, label = TRUE)^10 0.985 0.324886
## month(date, label = TRUE)^11 -1.187 0.235545
## fourier_vec(date, type = "sin", K = 1, period = 7) -4.837 1.46e-06 ***
## fourier_vec(date, type = "cos", K = 1, period = 7) 2.869 0.004172 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 57.94 on 1442 degrees of freedom
## (49 observations deleted due to missingness)
## Multiple R-squared: 0.2584, Adjusted R-squared: 0.2471
## F-statistic: 22.84 on 22 and 1442 DF, p-value: < 2.2e-16
Now we are going to do some basic pre-processing.
data_padded_tbl <- base_data %>%
pad_by_time(
.date_var = date,
.pad_value = 0
)
# Get log interval and standardization parameters
log_params <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset <- log_params$offset
data_liv_tbl <- data_padded_tbl %>%
# Get log interval transform
mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)
# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean <- std_params$mean
std_sd <- std_params$sd
data_transformed_tbl <- data_liv_tbl %>%
# get standardization
mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
select(-value)
Since this is panel data we can follow one of two different modeling strategies. We can search for a global model in the panel data or we can use nested forecasting finding the best model for each of the time series. Since we only have 5 panels, we will use nested forecasting.
To do this we will use the nest_timeseries
and
split_nested_timeseries
functions to create a nested tibble
.
horizon <- 4*7
nested_data_tbl <- data_transformed_tbl %>%
# 1. Extending: We'll predict n days into the future.
extend_timeseries(
.id_var = package,
.date_var = date,
.length_future = horizon
) %>%
# 2. Nesting: We'll group by id, and create a future dataset
# that forecasts n days of extended data and
# an actual dataset that contains n*2 days
nest_timeseries(
.id_var = package,
.length_future = horizon
#.length_actual = horizon*2
) %>%
# 3. Splitting: We'll take the actual data and create splits
# for accuracy and confidence interval estimation of n das (test)
# and the rest is training data
split_nested_timeseries(
.length_test = horizon
)
nested_data_tbl
## # A tibble: 9 × 4
## package .actual_data .future_data .splits
## <fct> <list> <list> <list>
## 1 healthyR.data <tibble [1,479 × 2]> <tibble [28 × 2]> <split [1451|28]>
## 2 healthyR <tibble [1,472 × 2]> <tibble [28 × 2]> <split [1444|28]>
## 3 <NA> <tibble [28 × 2]> <tibble [28 × 2]> <split [0|28]>
## 4 healthyR.ts <tibble [1,418 × 2]> <tibble [28 × 2]> <split [1390|28]>
## 5 healthyverse <tibble [1,389 × 2]> <tibble [28 × 2]> <split [1361|28]>
## 6 healthyR.ai <tibble [1,215 × 2]> <tibble [28 × 2]> <split [1187|28]>
## 7 TidyDensity <tibble [1,069 × 2]> <tibble [28 × 2]> <split [1041|28]>
## 8 tidyAML <tibble [685 × 2]> <tibble [28 × 2]> <split [657|28]>
## 9 RandomWalker <tibble [119 × 2]> <tibble [28 × 2]> <split [91|28]>
Now it is time to make some recipes and models using the modeltime workflow.
recipe_base <- recipe(
value_trans ~ date
, data = extract_nested_test_split(nested_data_tbl)
)
recipe_base
recipe_date <- recipe_base %>%
step_mutate(date = as.numeric(date))
# Models ------------------------------------------------------------------
# Auto ARIMA --------------------------------------------------------------
model_spec_arima_no_boost <- arima_reg() %>%
set_engine(engine = "auto_arima")
wflw_auto_arima <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_arima_no_boost)
# NNETAR ------------------------------------------------------------------
model_spec_nnetar <- nnetar_reg(
mode = "regression"
, seasonal_period = "auto"
) %>%
set_engine("nnetar")
wflw_nnetar <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_nnetar)
# TSLM --------------------------------------------------------------------
model_spec_lm <- linear_reg() %>%
set_engine("lm")
wflw_lm <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_lm)
# MARS --------------------------------------------------------------------
model_spec_mars <- mars(mode = "regression") %>%
set_engine("earth")
wflw_mars <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_mars)
nested_modeltime_tbl <- modeltime_nested_fit(
# Nested Data
nested_data = nested_data_tbl,
control = control_nested_fit(
verbose = TRUE,
allow_par = FALSE
),
# Add workflows
wflw_auto_arima,
wflw_lm,
wflw_mars,
wflw_nnetar
)
nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]
nested_modeltime_tbl %>%
extract_nested_test_accuracy() %>%
filter(!is.na(package)) %>%
knitr::kable()
package | .model_id | .model_desc | .type | mae | mape | mase | smape | rmse | rsq |
---|---|---|---|---|---|---|---|---|---|
healthyR.data | 1 | ARIMA | Test | 0.9505634 | 296.44441 | 0.7641665 | 164.1568 | 1.0853363 | 0.0000215 |
healthyR.data | 2 | LM | Test | 0.9273290 | 294.42288 | 0.7454881 | 162.0113 | 1.0648837 | 0.0220982 |
healthyR.data | 3 | EARTH | Test | 1.0909958 | 473.73140 | 0.8770614 | 154.4388 | 1.2160930 | 0.0220982 |
healthyR.data | 4 | NNAR | Test | 0.8165750 | 128.00640 | 0.6564520 | 163.1356 | 1.0550742 | 0.0261184 |
healthyR | 1 | ARIMA | Test | 0.7170400 | 115.03724 | 0.6546397 | 164.4519 | 0.8906775 | 0.0190719 |
healthyR | 2 | LM | Test | 0.7024222 | 99.07159 | 0.6412940 | 180.4487 | 0.8983997 | 0.0109789 |
healthyR | 3 | EARTH | Test | 0.6971997 | 102.81947 | 0.6365261 | 154.5354 | 0.9018441 | 0.0109789 |
healthyR | 4 | NNAR | Test | 0.7140946 | 112.35232 | 0.6519507 | 152.5039 | 0.9061415 | 0.0036073 |
healthyR.ts | 1 | ARIMA | Test | 0.8563541 | 201.61543 | 0.6258415 | 129.6562 | 1.0857972 | 0.0085404 |
healthyR.ts | 2 | LM | Test | 0.8739606 | 220.21342 | 0.6387087 | 129.5066 | 1.0935499 | 0.0062668 |
healthyR.ts | 3 | EARTH | Test | 0.8786187 | 225.13525 | 0.6421130 | 129.4310 | 1.0959569 | 0.0062668 |
healthyR.ts | 4 | NNAR | Test | 0.8681279 | 112.56278 | 0.6344460 | 171.5813 | 1.0967085 | 0.0031789 |
healthyverse | 1 | ARIMA | Test | 0.6833509 | 234.48592 | 0.7440722 | 112.3660 | 0.8071589 | 0.0115417 |
healthyverse | 2 | LM | Test | 0.7031547 | 296.47912 | 0.7656357 | 105.0306 | 0.8361981 | 0.0268294 |
healthyverse | 3 | EARTH | Test | 0.7537575 | 395.12537 | 0.8207349 | 100.8425 | 0.9173676 | 0.0268294 |
healthyverse | 4 | NNAR | Test | 0.6747939 | 179.27956 | 0.7347547 | 121.9473 | 0.8106909 | 0.0655704 |
healthyR.ai | 1 | ARIMA | Test | 0.6902049 | 102.06477 | 0.7203194 | 184.2778 | 0.8099597 | 0.0186075 |
healthyR.ai | 2 | LM | Test | 0.6509080 | 108.12465 | 0.6793080 | 141.4558 | 0.8126979 | 0.0039882 |
healthyR.ai | 3 | EARTH | Test | 0.6289580 | 131.29343 | 0.6564002 | 114.0339 | 0.8357718 | 0.0039882 |
healthyR.ai | 4 | NNAR | Test | 0.6809088 | 107.88660 | 0.7106178 | 157.4555 | 0.8191828 | 0.0002872 |
TidyDensity | 1 | ARIMA | Test | 0.7669925 | 187.11129 | 0.7331266 | 120.3530 | 0.9324481 | 0.0023540 |
TidyDensity | 2 | LM | Test | 0.7947690 | 215.96940 | 0.7596766 | 115.8751 | 0.9581631 | 0.0198052 |
TidyDensity | 3 | EARTH | Test | 0.7250557 | 155.67126 | 0.6930415 | 120.2691 | 0.8865397 | 0.0198052 |
TidyDensity | 4 | NNAR | Test | 0.7700472 | 147.06209 | 0.7360464 | 146.6095 | 0.9056274 | 0.0038639 |
tidyAML | 1 | ARIMA | Test | 0.9372263 | 261.47900 | 0.8126580 | 108.5427 | 1.0455927 | 0.0405904 |
tidyAML | 2 | LM | Test | 0.9831425 | 212.07941 | 0.8524715 | 118.9153 | 1.1303763 | 0.0078307 |
tidyAML | 3 | EARTH | Test | 0.9416255 | 284.08799 | 0.8164725 | 106.1738 | 1.0484107 | 0.0078307 |
tidyAML | 4 | NNAR | Test | 0.9643946 | 252.84854 | 0.8362154 | 111.6753 | 1.0887098 | 0.0063446 |
RandomWalker | 1 | ARIMA | Test | 1.0170357 | 166.32247 | 0.4805444 | 115.4064 | 1.2483094 | 0.2723496 |
RandomWalker | 2 | LM | Test | 1.2726136 | 106.13274 | 0.6013037 | 159.0587 | 1.4623653 | 0.0001226 |
RandomWalker | 3 | EARTH | Test | 1.2690645 | 100.65248 | 0.5996268 | 161.4669 | 1.4577607 | NA |
RandomWalker | 4 | NNAR | Test | 1.6396221 | 174.11423 | 0.7747134 | 163.0108 | 1.9536114 | 0.1688960 |
nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_show = FALSE,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
modeltime_nested_select_best(
metric = "rmse",
minimize = TRUE,
filter_test_forecasts = TRUE
)
best_nested_modeltime_tbl %>%
extract_nested_best_model_report()
## # Nested Modeltime Table
##
## # A tibble: 8 × 10
## package .model_id .model_desc .type mae mape mase smape rmse rsq
## <fct> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 healthyR.da… 4 NNAR Test 0.817 128. 0.656 163. 1.06 0.0261
## 2 healthyR 1 ARIMA Test 0.717 115. 0.655 164. 0.891 0.0191
## 3 healthyR.ts 1 ARIMA Test 0.856 202. 0.626 130. 1.09 0.00854
## 4 healthyverse 1 ARIMA Test 0.683 234. 0.744 112. 0.807 0.0115
## 5 healthyR.ai 1 ARIMA Test 0.690 102. 0.720 184. 0.810 0.0186
## 6 TidyDensity 3 EARTH Test 0.725 156. 0.693 120. 0.887 0.0198
## 7 tidyAML 1 ARIMA Test 0.937 261. 0.813 109. 1.05 0.0406
## 8 RandomWalker 1 ARIMA Test 1.02 166. 0.481 115. 1.25 0.272
best_nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
#filter(!is.na(.model_id)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
Now that we have the best models, we can make our future forecasts.
nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
modeltime_nested_refit(
control = control_nested_refit(verbose = TRUE)
)
nested_modeltime_refit_tbl
## # Nested Modeltime Table
##
## # A tibble: 8 × 5
## package .actual_data .future_data .splits .modeltime_tables
## <fct> <list> <list> <list> <list>
## 1 healthyR.data <tibble> <tibble> <split [1451|28]> <mdl_tm_t [1 × 5]>
## 2 healthyR <tibble> <tibble> <split [1444|28]> <mdl_tm_t [1 × 5]>
## 3 healthyR.ts <tibble> <tibble> <split [1390|28]> <mdl_tm_t [1 × 5]>
## 4 healthyverse <tibble> <tibble> <split [1361|28]> <mdl_tm_t [1 × 5]>
## 5 healthyR.ai <tibble> <tibble> <split [1187|28]> <mdl_tm_t [1 × 5]>
## 6 TidyDensity <tibble> <tibble> <split [1041|28]> <mdl_tm_t [1 × 5]>
## 7 tidyAML <tibble> <tibble> <split [657|28]> <mdl_tm_t [1 × 5]>
## 8 RandomWalker <tibble> <tibble> <split [91|28]> <mdl_tm_t [1 × 5]>
nested_modeltime_refit_tbl %>%
extract_nested_future_forecast() %>%
mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
x = .,
mean = std_mean,
sd = std_sd
)$standard_inverse_value)) %>%
mutate(across(.value:.conf_hi, .fns = ~ liiv(
x = .,
limit_lower = limit_lower,
limit_upper = limit_upper,
offset = offset
)$rescaled_v)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")