Steven P. Sanderson II, MPH - Date: 25 March, 2025
This analysis follows a Nested Modeltime Workflow.
glimpse(downloads_tbl)
## Rows: 134,960
## Columns: 11
## $ date <date> 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23,…
## $ time <Period> 15H 36M 55S, 11H 26M 39S, 23H 34M 44S, 18H 39M 32S, 9H 0M…
## $ date_time <dttm> 2020-11-23 15:36:55, 2020-11-23 11:26:39, 2020-11-23 23:34:…
## $ size <int> 4858294, 4858294, 4858301, 4858295, 361, 4863722, 4864794, 4…
## $ r_version <chr> NA, "4.0.3", "3.5.3", "3.5.2", NA, NA, NA, NA, NA, NA, NA, N…
## $ r_arch <chr> NA, "x86_64", "x86_64", "x86_64", NA, NA, NA, NA, NA, NA, NA…
## $ r_os <chr> NA, "mingw32", "mingw32", "linux-gnu", NA, NA, NA, NA, NA, N…
## $ package <chr> "healthyR.data", "healthyR.data", "healthyR.data", "healthyR…
## $ version <chr> "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0…
## $ country <chr> "US", "US", "US", "GB", "US", "US", "DE", "HK", "JP", "US", …
## $ ip_id <int> 2069, 2804, 78827, 27595, 90474, 90474, 42435, 74, 7655, 638…
The last day in the data set is 2025-03-23 23:55:20, the file was birthed on: 2024-08-07 07:35:44, and at report knit time is -5484.33 hours old. Happy analyzing!
Now that we have our data lets take a look at it using the skimr
package.
skim(downloads_tbl)
Name | downloads_tbl |
Number of rows | 134960 |
Number of columns | 11 |
_______________________ | |
Column type frequency: | |
character | 6 |
Date | 1 |
numeric | 2 |
POSIXct | 1 |
Timespan | 1 |
________________________ | |
Group variables | None |
Data summary
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
r_version | 96960 | 0.28 | 5 | 5 | 0 | 46 | 0 |
r_arch | 96960 | 0.28 | 3 | 7 | 0 | 5 | 0 |
r_os | 96960 | 0.28 | 7 | 15 | 0 | 21 | 0 |
package | 0 | 1.00 | 7 | 13 | 0 | 8 | 0 |
version | 0 | 1.00 | 5 | 17 | 0 | 60 | 0 |
country | 11359 | 0.92 | 2 | 2 | 0 | 163 | 0 |
Variable type: Date
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date | 0 | 1 | 2020-11-23 | 2025-03-23 | 2023-05-23 | 1582 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
size | 0 | 1 | 1135708.29 | 1525059.5 | 355 | 14701 | 261758 | 2367779 | 5677952 | ▇▁▂▁▁ |
ip_id | 0 | 1 | 10365.15 | 18351.5 | 1 | 303 | 3077 | 11772 | 209747 | ▇▁▁▁▁ |
Variable type: POSIXct
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date_time | 0 | 1 | 2020-11-23 09:00:41 | 2025-03-23 23:55:20 | 2023-05-23 08:12:29 | 82006 |
Variable type: Timespan
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
time | 0 | 1 | 0 | 59 | 11.5 | 60 |
We can see that the following columns are missing a lot of data and for
us are most likely not useful anyways, so we will drop them
c(r_version, r_arch, r_os)
Now lets take a look at a time-series plot of the total daily downloads by package. We will use a log scale and place a vertical line at each version release for each package.
Now lets take a look at some time series decomposition graphs.
Now that we have our basic data and a shot of what it looks like, let’s
add some features to our data which can be very helpful in modeling.
Lets start by making a tibble
that is aggregated by the day and
package, as we are going to be interested in forecasting the next 4
weeks or 28 days for each package. First lets get our base data.
##
## Call:
## stats::lm(formula = .formula, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -152.54 -35.18 -10.15 26.73 811.08
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -1.912e+02 7.422e+01
## date 1.152e-02 3.938e-03
## lag(value, 1) 1.106e-01 2.490e-02
## lag(value, 7) 9.278e-02 2.576e-02
## lag(value, 14) 9.664e-02 2.579e-02
## lag(value, 21) 6.504e-02 2.588e-02
## lag(value, 28) 6.100e-02 2.575e-02
## lag(value, 35) 6.965e-02 2.597e-02
## lag(value, 42) 5.249e-02 2.604e-02
## lag(value, 49) 8.483e-02 2.599e-02
## month(date, label = TRUE).L -1.100e+01 5.148e+00
## month(date, label = TRUE).Q 2.541e+00 5.186e+00
## month(date, label = TRUE).C -1.189e+01 5.241e+00
## month(date, label = TRUE)^4 -7.375e+00 5.199e+00
## month(date, label = TRUE)^5 -1.228e+01 5.198e+00
## month(date, label = TRUE)^6 -2.805e+00 5.277e+00
## month(date, label = TRUE)^7 -6.737e+00 5.165e+00
## month(date, label = TRUE)^8 -4.422e+00 5.195e+00
## month(date, label = TRUE)^9 5.595e+00 5.253e+00
## month(date, label = TRUE)^10 4.457e+00 5.295e+00
## month(date, label = TRUE)^11 -5.974e+00 5.323e+00
## fourier_vec(date, type = "sin", K = 1, period = 7) -1.187e+01 2.392e+00
## fourier_vec(date, type = "cos", K = 1, period = 7) 7.944e+00 2.521e+00
## t value Pr(>|t|)
## (Intercept) -2.576 0.010098 *
## date 2.926 0.003484 **
## lag(value, 1) 4.444 9.49e-06 ***
## lag(value, 7) 3.601 0.000327 ***
## lag(value, 14) 3.747 0.000186 ***
## lag(value, 21) 2.513 0.012064 *
## lag(value, 28) 2.369 0.017954 *
## lag(value, 35) 2.682 0.007389 **
## lag(value, 42) 2.016 0.044000 *
## lag(value, 49) 3.264 0.001122 **
## month(date, label = TRUE).L -2.136 0.032803 *
## month(date, label = TRUE).Q 0.490 0.624226
## month(date, label = TRUE).C -2.268 0.023479 *
## month(date, label = TRUE)^4 -1.419 0.156178
## month(date, label = TRUE)^5 -2.363 0.018258 *
## month(date, label = TRUE)^6 -0.532 0.595064
## month(date, label = TRUE)^7 -1.305 0.192244
## month(date, label = TRUE)^8 -0.851 0.394817
## month(date, label = TRUE)^9 1.065 0.286967
## month(date, label = TRUE)^10 0.842 0.400126
## month(date, label = TRUE)^11 -1.122 0.261851
## fourier_vec(date, type = "sin", K = 1, period = 7) -4.960 7.83e-07 ***
## fourier_vec(date, type = "cos", K = 1, period = 7) 3.151 0.001660 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 58.44 on 1510 degrees of freedom
## (49 observations deleted due to missingness)
## Multiple R-squared: 0.2565, Adjusted R-squared: 0.2457
## F-statistic: 23.68 on 22 and 1510 DF, p-value: < 2.2e-16
This is something I have been wanting to try for a while. The NNS
package is a great package for forecasting time series data.
library(NNS)
data_list <- base_data |>
select(package, value) |>
group_split(package)
data_list |>
imap(
\(x, idx) {
obj <- x
x <- obj |> pull(value) |> tail(7*52)
train_set_size <- length(x) - 56
pkg <- obj |> pluck(1) |> unique()
sf <- NNS.seas(x, modulo = 7, plot = FALSE)$periods
cat(paste0("Package: ", pkg, "\n"))
NNS.ARMA.optim(
variable = x,
h = 28,
training.set = train_set_size,
#seasonal.factor = seq(12, 60, 7),
seasonal.factor = sf,
pred.int = 0.95,
plot = TRUE
)
title(
sub = paste0("\n",
"Package: ", pkg, " - NNS Optimization")
)
}
)
## Package: healthyR
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 63 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.65203765955918"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 63, 98 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.29555525141976"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 63, 98, 77 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.27423532751044"
## [1] "BEST method = 'lin', seasonal.factor = c( 63, 98, 77 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 1.27423532751044"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 63, 98, 77 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 2.02678856433709"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 63, 98, 77 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 2.02678856433709"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 63, 98, 77 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 1.56243726318324"
## [1] "BEST method = 'both' PATH MEMBER = c( 63, 98, 77 )"
## [1] "BEST both OBJECTIVE FUNCTION = 1.56243726318324"
## Package: healthyR.ai
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 21 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.29866494864091"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 21, 49 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.1608234392989"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 21, 49, 70 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.08962167261241"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 21, 49, 70, 77 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.04678861598406"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 21, 49, 70, 77, 63 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.02149755567032"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 21, 49, 70, 77, 63, 98 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.0141054393139"
## [1] "BEST method = 'lin', seasonal.factor = c( 21, 49, 70, 77, 63, 98 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 1.0141054393139"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 21, 49, 70, 77, 63, 98 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 1.25195761718162"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 21, 49, 70, 77, 63, 98 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 1.25195761718162"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 21, 49, 70, 77, 63, 98 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 1.07017090346708"
## [1] "BEST method = 'both' PATH MEMBER = c( 21, 49, 70, 77, 63, 98 )"
## [1] "BEST both OBJECTIVE FUNCTION = 1.07017090346708"
## Package: healthyR.data
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 98 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.23057380916866"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 98, 77 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.05721599027709"
## [1] "BEST method = 'lin', seasonal.factor = c( 98, 77 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 1.05721599027709"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 98, 77 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 1.62465081028352"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 98, 77 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 1.62465081028352"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 98, 77 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 1.26674342430459"
## [1] "BEST method = 'both' PATH MEMBER = c( 98, 77 )"
## [1] "BEST both OBJECTIVE FUNCTION = 1.26674342430459"
## Package: healthyR.ts
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 63 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.47385708813808"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 63, 98 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 0.998258265285851"
## [1] "BEST method = 'lin', seasonal.factor = c( 63, 98 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 0.998258265285851"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 63, 98 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 1.49268218677669"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 63, 98 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 1.49268218677669"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 63, 98 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 1.13831056904065"
## [1] "BEST method = 'both' PATH MEMBER = c( 63, 98 )"
## [1] "BEST both OBJECTIVE FUNCTION = 1.13831056904065"
## Package: healthyverse
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 49 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.57536143406016"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 49, 77 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.4540739361251"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 49, 77, 70 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.41222534120947"
## [1] "BEST method = 'lin', seasonal.factor = c( 49, 77, 70 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 1.41222534120947"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 49, 77, 70 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 2.81447690910504"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 49, 77, 70 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 2.81447690910504"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 49, 77, 70 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 1.92441739854578"
## [1] "BEST method = 'both' PATH MEMBER = c( 49, 77, 70 )"
## [1] "BEST both OBJECTIVE FUNCTION = 1.92441739854578"
## Package: RandomWalker
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 35 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 4.19950737006945"
## [1] "BEST method = 'lin', seasonal.factor = c( 35 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 4.19950737006945"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 35 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 7.30272082036707"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 35 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 7.30272082036707"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 35 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 5.82576359750716"
## [1] "BEST method = 'both' PATH MEMBER = c( 35 )"
## [1] "BEST both OBJECTIVE FUNCTION = 5.82576359750716"
## Package: tidyAML
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 56 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 4.11556373093916"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 56, 28 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 3.94994337451389"
## [1] "BEST method = 'lin', seasonal.factor = c( 56, 28 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 3.94994337451389"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 56, 28 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 3.76998489079901"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 56, 28 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 3.76998489079901"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 56, 28 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 3.46447348194367"
## [1] "BEST method = 'both' PATH MEMBER = c( 56, 28 )"
## [1] "BEST both OBJECTIVE FUNCTION = 3.46447348194367"
## Package: TidyDensity
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 63 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.66656162672833"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 63, 77 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 1.38583709032771"
## [1] "BEST method = 'lin', seasonal.factor = c( 63, 77 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 1.38583709032771"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 63, 77 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 2.29445031300988"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 63, 77 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 2.29445031300988"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 63, 77 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 1.6602138613908"
## [1] "BEST method = 'both' PATH MEMBER = c( 63, 77 )"
## [1] "BEST both OBJECTIVE FUNCTION = 1.6602138613908"
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
Now we are going to do some basic pre-processing.
data_padded_tbl <- base_data %>%
pad_by_time(
.date_var = date,
.pad_value = 0
)
# Get log interval and standardization parameters
log_params <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset <- log_params$offset
data_liv_tbl <- data_padded_tbl %>%
# Get log interval transform
mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)
# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean <- std_params$mean
std_sd <- std_params$sd
data_transformed_tbl <- data_liv_tbl %>%
# get standardization
mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
select(-value)
Since this is panel data we can follow one of two different modeling strategies. We can search for a global model in the panel data or we can use nested forecasting finding the best model for each of the time series. Since we only have 5 panels, we will use nested forecasting.
To do this we will use the nest_timeseries
and
split_nested_timeseries
functions to create a nested tibble
.
horizon <- 4*7
nested_data_tbl <- data_transformed_tbl %>%
# 1. Extending: We'll predict n days into the future.
extend_timeseries(
.id_var = package,
.date_var = date,
.length_future = horizon
) %>%
# 2. Nesting: We'll group by id, and create a future dataset
# that forecasts n days of extended data and
# an actual dataset that contains n*2 days
nest_timeseries(
.id_var = package,
.length_future = horizon
#.length_actual = horizon*2
) %>%
# 3. Splitting: We'll take the actual data and create splits
# for accuracy and confidence interval estimation of n das (test)
# and the rest is training data
split_nested_timeseries(
.length_test = horizon
)
nested_data_tbl
## # A tibble: 8 × 4
## package .actual_data .future_data .splits
## <fct> <list> <list> <list>
## 1 healthyR.data <tibble [1,575 × 2]> <tibble [28 × 2]> <split [1547|28]>
## 2 healthyR <tibble [1,568 × 2]> <tibble [28 × 2]> <split [1540|28]>
## 3 healthyR.ts <tibble [1,512 × 2]> <tibble [28 × 2]> <split [1484|28]>
## 4 healthyverse <tibble [1,483 × 2]> <tibble [28 × 2]> <split [1455|28]>
## 5 healthyR.ai <tibble [1,307 × 2]> <tibble [28 × 2]> <split [1279|28]>
## 6 TidyDensity <tibble [1,158 × 2]> <tibble [28 × 2]> <split [1130|28]>
## 7 tidyAML <tibble [766 × 2]> <tibble [28 × 2]> <split [738|28]>
## 8 RandomWalker <tibble [188 × 2]> <tibble [28 × 2]> <split [160|28]>
Now it is time to make some recipes and models using the modeltime workflow.
recipe_base <- recipe(
value_trans ~ date
, data = extract_nested_test_split(nested_data_tbl)
)
recipe_base
recipe_date <- recipe_base %>%
step_mutate(date = as.numeric(date))
# Models ------------------------------------------------------------------
# Auto ARIMA --------------------------------------------------------------
model_spec_arima_no_boost <- arima_reg() %>%
set_engine(engine = "auto_arima")
wflw_auto_arima <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_arima_no_boost)
# NNETAR ------------------------------------------------------------------
model_spec_nnetar <- nnetar_reg(
mode = "regression"
, seasonal_period = "auto"
) %>%
set_engine("nnetar")
wflw_nnetar <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_nnetar)
# TSLM --------------------------------------------------------------------
model_spec_lm <- linear_reg() %>%
set_engine("lm")
wflw_lm <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_lm)
# MARS --------------------------------------------------------------------
model_spec_mars <- mars(mode = "regression") %>%
set_engine("earth")
wflw_mars <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_mars)
nested_modeltime_tbl <- modeltime_nested_fit(
# Nested Data
nested_data = nested_data_tbl,
control = control_nested_fit(
verbose = TRUE,
allow_par = FALSE
),
# Add workflows
wflw_auto_arima,
wflw_lm,
wflw_mars,
wflw_nnetar
)
nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]
nested_modeltime_tbl %>%
extract_nested_test_accuracy() %>%
filter(!is.na(package)) %>%
knitr::kable()
package | .model_id | .model_desc | .type | mae | mape | mase | smape | rmse | rsq |
---|---|---|---|---|---|---|---|---|---|
healthyR.data | 1 | ARIMA | Test | 0.6565796 | 116.59599 | 0.7087049 | 163.14431 | 0.8560299 | 0.1235540 |
healthyR.data | 2 | LM | Test | 0.6796253 | 205.84906 | 0.7335802 | 134.14130 | 0.8176252 | 0.0010151 |
healthyR.data | 3 | EARTH | Test | 0.9702192 | 278.08628 | 1.0472442 | 149.35384 | 1.1956195 | 0.0010151 |
healthyR.data | 4 | NNAR | Test | 0.6705705 | 98.63562 | 0.7238065 | 157.81912 | 0.8897434 | 0.0501536 |
healthyR | 1 | ARIMA | Test | 0.6890054 | 174.24053 | 0.7935496 | 161.47950 | 0.8158807 | 0.0360881 |
healthyR | 2 | LM | Test | 0.6272830 | 101.38875 | 0.7224619 | 183.75339 | 0.7852797 | 0.0132129 |
healthyR | 3 | EARTH | Test | 1.3285323 | 498.96043 | 1.5301132 | 155.38119 | 1.5053280 | 0.0132129 |
healthyR | 4 | NNAR | Test | 0.6283184 | 217.26022 | 0.7236545 | 158.48407 | 0.7577485 | 0.0717530 |
healthyR.ts | 1 | ARIMA | Test | 0.9415448 | 390.63688 | 0.7667893 | 132.97745 | 1.1397569 | 0.0313140 |
healthyR.ts | 2 | LM | Test | 0.8940678 | 321.84444 | 0.7281242 | 134.60365 | 1.0974871 | 0.0313140 |
healthyR.ts | 3 | EARTH | Test | 0.9112286 | 349.82888 | 0.7421000 | 133.58187 | 1.1132884 | 0.0313140 |
healthyR.ts | 4 | NNAR | Test | 0.8140338 | 91.85651 | 0.6629450 | 149.70367 | 1.0617763 | 0.0238798 |
healthyverse | 1 | ARIMA | Test | 0.6299406 | 194.68351 | 0.9199621 | 110.03371 | 0.7596636 | 0.0109891 |
healthyverse | 2 | LM | Test | 0.6282391 | 274.27691 | 0.9174773 | 96.70843 | 0.7362152 | 0.0079292 |
healthyverse | 3 | EARTH | Test | 0.6245993 | 160.32605 | 0.9121616 | 108.86171 | 0.7813035 | 0.0079292 |
healthyverse | 4 | NNAR | Test | 0.6156948 | 157.65515 | 0.8991576 | 108.86658 | 0.7749583 | 0.0623742 |
healthyR.ai | 1 | ARIMA | Test | 0.7592044 | 132.58795 | 0.8424575 | 180.06270 | 0.8774807 | 0.0999979 |
healthyR.ai | 2 | LM | Test | 0.6916956 | 104.82872 | 0.7675458 | 139.21493 | 0.8564570 | 0.0000071 |
healthyR.ai | 3 | EARTH | Test | 1.8473839 | 843.51805 | 2.0499650 | 158.70978 | 2.0574101 | 0.0000071 |
healthyR.ai | 4 | NNAR | Test | 0.6952361 | 125.29263 | 0.7714745 | 140.63123 | 0.8235728 | 0.1138667 |
TidyDensity | 1 | ARIMA | Test | 0.6531213 | 247.52642 | 0.7867225 | 111.41476 | 0.8065647 | 0.0001124 |
TidyDensity | 2 | LM | Test | 0.6816525 | 295.23654 | 0.8210899 | 110.77372 | 0.8369230 | 0.0330505 |
TidyDensity | 3 | EARTH | Test | 0.6305063 | 222.25821 | 0.7594813 | 113.86294 | 0.7789545 | 0.0330505 |
TidyDensity | 4 | NNAR | Test | 0.6132933 | 153.82800 | 0.7387473 | 132.50941 | 0.7760688 | 0.0349705 |
tidyAML | 1 | ARIMA | Test | 0.6617345 | 270.46265 | 0.7658134 | 102.35723 | 0.7913574 | 0.0019970 |
tidyAML | 2 | LM | Test | 0.6432591 | 269.94911 | 0.7444322 | 97.97285 | 0.7565889 | 0.0089875 |
tidyAML | 3 | EARTH | Test | 0.6610224 | 115.71780 | 0.7649893 | 122.65866 | 0.8591560 | 0.0089875 |
tidyAML | 4 | NNAR | Test | 0.6336836 | 228.64836 | 0.7333505 | 104.03267 | 0.7622930 | 0.0072458 |
RandomWalker | 1 | ARIMA | Test | 0.9415180 | 111.69127 | 0.5786079 | 89.80395 | 1.3393827 | 0.0985831 |
RandomWalker | 2 | LM | Test | 1.2138154 | 118.16185 | 0.7459477 | 190.67407 | 1.3190336 | 0.0037389 |
RandomWalker | 3 | EARTH | Test | 1.0968298 | 90.67833 | 0.6740545 | 166.81853 | 1.2486564 | NA |
RandomWalker | 4 | NNAR | Test | 1.6761239 | 291.91288 | 1.0300584 | 156.63613 | 2.0174300 | 0.0189678 |
nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_show = FALSE,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
modeltime_nested_select_best(
metric = "rmse",
minimize = TRUE,
filter_test_forecasts = TRUE
)
best_nested_modeltime_tbl %>%
extract_nested_best_model_report()
## # Nested Modeltime Table
##
## # A tibble: 8 × 10
## package .model_id .model_desc .type mae mape mase smape rmse rsq
## <fct> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 healthyR.d… 2 LM Test 0.680 206. 0.734 134. 0.818 0.00102
## 2 healthyR 4 NNAR Test 0.628 217. 0.724 158. 0.758 0.0718
## 3 healthyR.ts 4 NNAR Test 0.814 91.9 0.663 150. 1.06 0.0239
## 4 healthyver… 2 LM Test 0.628 274. 0.917 96.7 0.736 0.00793
## 5 healthyR.ai 4 NNAR Test 0.695 125. 0.771 141. 0.824 0.114
## 6 TidyDensity 4 NNAR Test 0.613 154. 0.739 133. 0.776 0.0350
## 7 tidyAML 2 LM Test 0.643 270. 0.744 98.0 0.757 0.00899
## 8 RandomWalk… 3 EARTH Test 1.10 90.7 0.674 167. 1.25 NA
best_nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
#filter(!is.na(.model_id)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
Now that we have the best models, we can make our future forecasts.
nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
modeltime_nested_refit(
control = control_nested_refit(verbose = TRUE)
)
nested_modeltime_refit_tbl
## # Nested Modeltime Table
##
## # A tibble: 8 × 5
## package .actual_data .future_data .splits .modeltime_tables
## <fct> <list> <list> <list> <list>
## 1 healthyR.data <tibble> <tibble> <split [1547|28]> <mdl_tm_t [1 × 5]>
## 2 healthyR <tibble> <tibble> <split [1540|28]> <mdl_tm_t [1 × 5]>
## 3 healthyR.ts <tibble> <tibble> <split [1484|28]> <mdl_tm_t [1 × 5]>
## 4 healthyverse <tibble> <tibble> <split [1455|28]> <mdl_tm_t [1 × 5]>
## 5 healthyR.ai <tibble> <tibble> <split [1279|28]> <mdl_tm_t [1 × 5]>
## 6 TidyDensity <tibble> <tibble> <split [1130|28]> <mdl_tm_t [1 × 5]>
## 7 tidyAML <tibble> <tibble> <split [738|28]> <mdl_tm_t [1 × 5]>
## 8 RandomWalker <tibble> <tibble> <split [160|28]> <mdl_tm_t [1 × 5]>
nested_modeltime_refit_tbl %>%
extract_nested_future_forecast() %>%
mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
x = .,
mean = std_mean,
sd = std_sd
)$standard_inverse_value)) %>%
mutate(across(.value:.conf_hi, .fns = ~ liiv(
x = .,
limit_lower = limit_lower,
limit_upper = limit_upper,
offset = offset
)$rescaled_v)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")