healthyverse_tsa

Time Series Analysis and Nested Modeling of the Healthyverse Packages

Steven P. Sanderson II, MPH - Date: 18 November, 2024

This analysis follows a Nested Modeltime Workflow.

Get Data

glimpse(downloads_tbl)
## Rows: 121,242
## Columns: 11
## $ date      <date> 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23,…
## $ time      <Period> 15H 36M 55S, 11H 26M 39S, 23H 34M 44S, 18H 39M 32S, 9H 0M…
## $ date_time <dttm> 2020-11-23 15:36:55, 2020-11-23 11:26:39, 2020-11-23 23:34:…
## $ size      <int> 4858294, 4858294, 4858301, 4858295, 361, 4863722, 4864794, 4…
## $ r_version <chr> NA, "4.0.3", "3.5.3", "3.5.2", NA, NA, NA, NA, NA, NA, NA, N…
## $ r_arch    <chr> NA, "x86_64", "x86_64", "x86_64", NA, NA, NA, NA, NA, NA, NA…
## $ r_os      <chr> NA, "mingw32", "mingw32", "linux-gnu", NA, NA, NA, NA, NA, N…
## $ package   <chr> "healthyR.data", "healthyR.data", "healthyR.data", "healthyR…
## $ version   <chr> "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0…
## $ country   <chr> "US", "US", "US", "GB", "US", "US", "DE", "HK", "JP", "US", …
## $ ip_id     <int> 2069, 2804, 78827, 27595, 90474, 90474, 42435, 74, 7655, 638…

The last day in the data set is 2024-11-16 19:39:15, the file was birthed on: 2022-07-02 23:58:17.511888, and at report knit time is -2.082368^{4} hours old. Happy analyzing!

Now that we have our data lets take a look at it using the skimr package.

skim(downloads_tbl)
   
Name downloads_tbl
Number of rows 121242
Number of columns 11
_______________________  
Column type frequency:  
character 6
Date 1
numeric 2
POSIXct 1
Timespan 1
________________________  
Group variables None

Data summary

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
r_version 85720 0.29 5 5 0 44 0
r_arch 85720 0.29 3 7 0 5 0
r_os 85720 0.29 7 15 0 20 0
package 0 1.00 7 13 0 8 0
version 0 1.00 5 17 0 60 0
country 10412 0.91 2 2 0 160 0

Variable type: Date

skim_variable n_missing complete_rate min max median n_unique
date 0 1 2020-11-23 2024-11-16 2023-03-18 1455

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
size 0 1 1158401.0 1543461.96 355 14701 260378 2368362 5677952 ▇▁▂▁▁
ip_id 0 1 10332.5 18007.86 1 317 3098 11769 143633 ▇▁▁▁▁

Variable type: POSIXct

skim_variable n_missing complete_rate min max median n_unique
date_time 0 1 2020-11-23 09:00:41 2024-11-16 19:39:15 2023-03-18 16:15:19 73510

Variable type: Timespan

skim_variable n_missing complete_rate min max median n_unique
time 0 1 0 59 52 60

We can see that the following columns are missing a lot of data and for us are most likely not useful anyways, so we will drop them c(r_version, r_arch, r_os)

Plots

Now lets take a look at a time-series plot of the total daily downloads by package. We will use a log scale and place a vertical line at each version release for each package.

Now lets take a look at some time series decomposition graphs.

Feature Engineering

Now that we have our basic data and a shot of what it looks like, let’s add some features to our data which can be very helpful in modeling. Lets start by making a tibble that is aggregated by the day and package, as we are going to be interested in forecasting the next 4 weeks or 28 days for each package. First lets get our base data.

## 
## Call:
## stats::lm(formula = .formula, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -155.48  -34.18   -9.54   26.59  800.73 
## 
## Coefficients:
##                                                      Estimate Std. Error
## (Intercept)                                        -1.805e+02  8.310e+01
## date                                                1.082e-02  4.405e-03
## lag(value, 1)                                       1.370e-01  2.581e-02
## lag(value, 7)                                       9.859e-02  2.688e-02
## lag(value, 14)                                      1.086e-01  2.695e-02
## lag(value, 21)                                      2.988e-02  2.715e-02
## lag(value, 28)                                      8.032e-02  2.698e-02
## lag(value, 35)                                      6.959e-02  2.712e-02
## lag(value, 42)                                      3.714e-02  2.712e-02
## lag(value, 49)                                      1.075e-01  2.692e-02
## month(date, label = TRUE).L                        -1.089e+01  5.632e+00
## month(date, label = TRUE).Q                         1.620e+00  5.537e+00
## month(date, label = TRUE).C                        -1.206e+01  5.579e+00
## month(date, label = TRUE)^4                        -9.048e+00  5.516e+00
## month(date, label = TRUE)^5                        -1.420e+01  5.463e+00
## month(date, label = TRUE)^6                        -2.438e+00  5.497e+00
## month(date, label = TRUE)^7                        -9.987e+00  5.350e+00
## month(date, label = TRUE)^8                        -2.964e+00  5.307e+00
## month(date, label = TRUE)^9                         3.918e+00  5.281e+00
## month(date, label = TRUE)^10                        4.996e+00  5.275e+00
## month(date, label = TRUE)^11                       -6.174e+00  5.289e+00
## fourier_vec(date, type = "sin", K = 1, period = 7) -1.168e+01  2.470e+00
## fourier_vec(date, type = "cos", K = 1, period = 7)  6.616e+00  2.579e+00
##                                                    t value Pr(>|t|)    
## (Intercept)                                         -2.172 0.030013 *  
## date                                                 2.456 0.014153 *  
## lag(value, 1)                                        5.308 1.29e-07 ***
## lag(value, 7)                                        3.668 0.000253 ***
## lag(value, 14)                                       4.030 5.87e-05 ***
## lag(value, 21)                                       1.101 0.271180    
## lag(value, 28)                                       2.977 0.002958 ** 
## lag(value, 35)                                       2.566 0.010384 *  
## lag(value, 42)                                       1.369 0.171097    
## lag(value, 49)                                       3.995 6.81e-05 ***
## month(date, label = TRUE).L                         -1.933 0.053443 .  
## month(date, label = TRUE).Q                          0.293 0.769901    
## month(date, label = TRUE).C                         -2.161 0.030841 *  
## month(date, label = TRUE)^4                         -1.640 0.101144    
## month(date, label = TRUE)^5                         -2.599 0.009454 ** 
## month(date, label = TRUE)^6                         -0.444 0.657472    
## month(date, label = TRUE)^7                         -1.867 0.062142 .  
## month(date, label = TRUE)^8                         -0.559 0.576593    
## month(date, label = TRUE)^9                          0.742 0.458312    
## month(date, label = TRUE)^10                         0.947 0.343764    
## month(date, label = TRUE)^11                        -1.167 0.243250    
## fourier_vec(date, type = "sin", K = 1, period = 7)  -4.729 2.48e-06 ***
## fourier_vec(date, type = "cos", K = 1, period = 7)   2.565 0.010426 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 58.01 on 1383 degrees of freedom
##   (49 observations deleted due to missingness)
## Multiple R-squared:  0.2605, Adjusted R-squared:  0.2487 
## F-statistic: 22.14 on 22 and 1383 DF,  p-value: < 2.2e-16

Now we are going to do some basic pre-processing.

data_padded_tbl <- base_data %>%
  pad_by_time(
    .date_var  = date,
    .pad_value = 0
  )

# Get log interval and standardization parameters
log_params  <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset      <- log_params$offset

data_liv_tbl <- data_padded_tbl %>%
  # Get log interval transform
  mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)

# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean   <- std_params$mean
std_sd     <- std_params$sd

data_transformed_tbl <- data_liv_tbl %>%
  # get standardization
  mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
  select(-value)

Since this is panel data we can follow one of two different modeling strategies. We can search for a global model in the panel data or we can use nested forecasting finding the best model for each of the time series. Since we only have 5 panels, we will use nested forecasting.

To do this we will use the nest_timeseries and split_nested_timeseries functions to create a nested tibble.

horizon <- 4*7

nested_data_tbl <- data_transformed_tbl %>%
    
    # 1. Extending: We'll predict n days into the future.
    extend_timeseries(
        .id_var        = package,
        .date_var      = date,
        .length_future = horizon
    ) %>%
    
    # 2. Nesting: We'll group by id, and create a future dataset
    #    that forecasts n days of extended data and
    #    an actual dataset that contains n*2 days
    nest_timeseries(
        .id_var        = package,
        .length_future = horizon
        #.length_actual = horizon*2
    ) %>%
    
   # 3. Splitting: We'll take the actual data and create splits
   #    for accuracy and confidence interval estimation of n das (test)
   #    and the rest is training data
    split_nested_timeseries(
        .length_test = horizon
    )

nested_data_tbl
## # A tibble: 9 × 4
##   package       .actual_data         .future_data      .splits          
##   <fct>         <list>               <list>            <list>           
## 1 healthyR.data <tibble [1,421 × 2]> <tibble [28 × 2]> <split [1393|28]>
## 2 healthyR      <tibble [1,414 × 2]> <tibble [28 × 2]> <split [1386|28]>
## 3 <NA>          <tibble [27 × 2]>    <tibble [28 × 2]> <split [0|27]>   
## 4 healthyR.ts   <tibble [1,360 × 2]> <tibble [28 × 2]> <split [1332|28]>
## 5 healthyverse  <tibble [1,331 × 2]> <tibble [28 × 2]> <split [1303|28]>
## 6 healthyR.ai   <tibble [1,157 × 2]> <tibble [28 × 2]> <split [1129|28]>
## 7 TidyDensity   <tibble [1,011 × 2]> <tibble [28 × 2]> <split [983|28]> 
## 8 tidyAML       <tibble [627 × 2]>   <tibble [28 × 2]> <split [599|28]> 
## 9 RandomWalker  <tibble [61 × 2]>    <tibble [28 × 2]> <split [33|28]>

Now it is time to make some recipes and models using the modeltime workflow.

Modeltime Workflow

Recipe Object

recipe_base <- recipe(
  value_trans ~ date
  , data = extract_nested_test_split(nested_data_tbl)
  )

recipe_base

recipe_date <- recipe_base %>%
    step_mutate(date = as.numeric(date))

Models

# Models ------------------------------------------------------------------

# Auto ARIMA --------------------------------------------------------------

model_spec_arima_no_boost <- arima_reg() %>%
  set_engine(engine = "auto_arima")

wflw_auto_arima <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_arima_no_boost)

# NNETAR ------------------------------------------------------------------

model_spec_nnetar <- nnetar_reg(
  mode              = "regression"
  , seasonal_period = "auto"
) %>%
  set_engine("nnetar")

wflw_nnetar <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_nnetar)

# TSLM --------------------------------------------------------------------

model_spec_lm <- linear_reg() %>%
  set_engine("lm")

wflw_lm <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_lm)

# MARS --------------------------------------------------------------------

model_spec_mars <- mars(mode = "regression") %>%
  set_engine("earth")

wflw_mars <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_mars)

Nested Modeltime Tables

nested_modeltime_tbl <- modeltime_nested_fit(
  # Nested Data
  nested_data = nested_data_tbl,
   control = control_nested_fit(
     verbose = TRUE,
     allow_par = FALSE
   ),
  # Add workflows
  wflw_auto_arima,
  wflw_lm,
  wflw_mars,
  wflw_nnetar
)
nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]

Model Accuracy

nested_modeltime_tbl %>%
  extract_nested_test_accuracy() %>%
  knitr::kable()
package .model_id .model_desc .type mae mape mase smape rmse rsq
healthyR.data 1 ARIMA Test 0.7810376 112.50472 0.7034284 149.74082 0.9292708 0.0017188
healthyR.data 2 LM Test 0.7982267 124.46119 0.7189095 138.03599 0.9243863 0.0971981
healthyR.data 3 EARTH Test 0.8027372 133.19776 0.7229718 132.32620 0.9290722 0.0971981
healthyR.data 4 NNAR Test 0.8200925 115.30969 0.7386025 179.90550 0.9835572 0.0176729
healthyR 1 ARIMA Test 0.7237616 114.76892 0.7620171 158.49599 0.8365450 0.0463836
healthyR 2 LM Test 0.7358624 106.41873 0.7747575 183.13012 0.8730928 0.0047224
healthyR 3 EARTH Test 0.7384760 163.25946 0.7775093 137.90268 0.8709153 0.0047224
healthyR 4 NNAR Test 0.7040423 118.15219 0.7412555 158.52869 0.8374067 0.1289571
NA 1 NULL NA NA NA NA NA NA NA
NA 2 NULL NA NA NA NA NA NA NA
NA 3 NULL NA NA NA NA NA NA NA
NA 4 NULL NA NA NA NA NA NA NA
healthyR.ts 1 ARIMA Test 0.8526869 509.67782 0.8039143 118.18199 1.0312388 0.0419216
healthyR.ts 2 LM Test 0.8231722 357.16445 0.7760878 125.09264 1.0395543 0.0415370
healthyR.ts 3 EARTH Test 2.0811405 1685.38327 1.9621021 128.93437 2.4177335 0.0415370
healthyR.ts 4 NNAR Test 0.8950559 442.97305 0.8438599 154.29354 1.1051518 0.0291220
healthyverse 1 ARIMA Test 0.5082383 93.72746 0.7379245 110.58125 0.6177964 0.1882470
healthyverse 2 LM Test 0.5613716 165.57437 0.8150703 91.44232 0.7047465 0.0050818
healthyverse 3 EARTH Test 0.7499580 116.12741 1.0888838 169.16034 0.8958506 0.0050818
healthyverse 4 NNAR Test 0.5248916 104.29189 0.7621040 104.67467 0.6563780 0.0000550
healthyR.ai 1 ARIMA Test 0.6971440 128.05394 0.7294960 169.90028 0.8318309 0.0179374
healthyR.ai 2 LM Test 0.6829766 122.02458 0.7146712 140.34663 0.8803112 0.0031181
healthyR.ai 3 EARTH Test 0.7439483 193.49509 0.7784723 153.60308 0.8626060 0.0031181
healthyR.ai 4 NNAR Test 0.6623144 109.58744 0.6930501 141.90215 0.8496473 0.0185086
TidyDensity 1 ARIMA Test 0.7147132 513.55135 0.7076641 123.68627 0.8185539 0.2235159
TidyDensity 2 LM Test 0.7974121 685.04963 0.7895474 124.13760 0.9015823 0.0146151
TidyDensity 3 EARTH Test 0.7249758 458.61440 0.7178254 128.70673 0.8487269 0.0146151
TidyDensity 4 NNAR Test 0.6518085 132.19660 0.6453798 142.89746 0.8436090 0.1420901
tidyAML 1 ARIMA Test 0.4152941 412.84769 0.7190458 88.42330 0.4968922 0.0479942
tidyAML 2 LM Test 0.4339022 358.42789 0.7512641 90.16658 0.5093395 0.0083732
tidyAML 3 EARTH Test 0.4258060 387.75671 0.7372462 86.65644 0.5074485 0.0083732
tidyAML 4 NNAR Test 0.4586570 577.40139 0.7941249 84.52769 0.5671046 0.0226041
RandomWalker 1 ARIMA Test 1.1063046 104.96045 0.6863441 115.24143 1.4312822 0.0201624
RandomWalker 2 LM Test 1.7448823 230.52447 1.0825134 124.05367 2.1352879 0.0043354
RandomWalker 3 EARTH Test 1.1060859 109.36517 0.6862083 107.97889 1.4641289 NA
RandomWalker 4 NNAR Test 1.0766846 103.65364 0.6679680 115.28360 1.3964544 0.0372556

Plot Models

nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  group_by(package) %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_show  = FALSE,
    .facet_scales = "free"
  ) +
  theme_minimal() +
  theme(legend.position = "bottom")

Best Model

best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
  modeltime_nested_select_best(
    metric = "rmse",
    minimize = TRUE,
    filter_test_forecasts = TRUE
  )

best_nested_modeltime_tbl %>%
  extract_nested_best_model_report()
## # Nested Modeltime Table
## 

## # A tibble: 8 × 10
##   package       .model_id .model_desc .type   mae  mape  mase smape  rmse    rsq
##   <fct>             <int> <chr>       <chr> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
## 1 healthyR.data         2 LM          Test  0.798 124.  0.719 138.  0.924 0.0972
## 2 healthyR              1 ARIMA       Test  0.724 115.  0.762 158.  0.837 0.0464
## 3 healthyR.ts           1 ARIMA       Test  0.853 510.  0.804 118.  1.03  0.0419
## 4 healthyverse          1 ARIMA       Test  0.508  93.7 0.738 111.  0.618 0.188 
## 5 healthyR.ai           1 ARIMA       Test  0.697 128.  0.729 170.  0.832 0.0179
## 6 TidyDensity           1 ARIMA       Test  0.715 514.  0.708 124.  0.819 0.224 
## 7 tidyAML               1 ARIMA       Test  0.415 413.  0.719  88.4 0.497 0.0480
## 8 RandomWalker          4 NNAR        Test  1.08  104.  0.668 115.  1.40  0.0373
best_nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  #filter(!is.na(.model_id)) %>%
  group_by(package) %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  theme_minimal() +
  theme(legend.position = "bottom")

Refitting and Future Forecast

Now that we have the best models, we can make our future forecasts.

nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
    modeltime_nested_refit(
        control = control_nested_refit(verbose = TRUE)
    )
nested_modeltime_refit_tbl
## # Nested Modeltime Table
## 

## # A tibble: 8 × 5
##   package       .actual_data .future_data .splits           .modeltime_tables 
##   <fct>         <list>       <list>       <list>            <list>            
## 1 healthyR.data <tibble>     <tibble>     <split [1393|28]> <mdl_tm_t [1 × 5]>
## 2 healthyR      <tibble>     <tibble>     <split [1386|28]> <mdl_tm_t [1 × 5]>
## 3 healthyR.ts   <tibble>     <tibble>     <split [1332|28]> <mdl_tm_t [1 × 5]>
## 4 healthyverse  <tibble>     <tibble>     <split [1303|28]> <mdl_tm_t [1 × 5]>
## 5 healthyR.ai   <tibble>     <tibble>     <split [1129|28]> <mdl_tm_t [1 × 5]>
## 6 TidyDensity   <tibble>     <tibble>     <split [983|28]>  <mdl_tm_t [1 × 5]>
## 7 tidyAML       <tibble>     <tibble>     <split [599|28]>  <mdl_tm_t [1 × 5]>
## 8 RandomWalker  <tibble>     <tibble>     <split [33|28]>   <mdl_tm_t [1 × 5]>
nested_modeltime_refit_tbl %>%
  extract_nested_future_forecast() %>%
  mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
    x    = .,
    mean = std_mean,
    sd   = std_sd
  )$standard_inverse_value)) %>%
  mutate(across(.value:.conf_hi, .fns = ~ liiv(
    x = .,
    limit_lower = limit_lower,
    limit_upper = limit_upper,
    offset      = offset
  )$rescaled_v)) %>%
  group_by(package) %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  theme_minimal() +
  theme(legend.position = "bottom")