hai_auto_wflw_metrics(.data)
Introduction
When working with the {tidymodels}
framework there are ways to pull model metrics from a workflow
, since {healthyR.ai}
is built on and around the {tidyverse}
and {tidymodels}
we can do the same. This post will focus on the function hai_auto_wflw_metrics()
Function
Let’s take a look at the function call.
The only parameter is .data
and this is strictly the output object of one of the hai_auto_
boiler plate functions
Example
Since this function requires the input from an hai_auto
function, we will walk through an example with the iris data set. We are going to use the hai_auto_knn()
to classify the Species
.
library(healthyR.ai)
<- iris
data
<- hai_knn_data_prepper(data, Species ~ .)
rec_obj
<- hai_auto_knn(
auto_knn .data = data,
.rec_obj = rec_obj,
.best_metric = "f_meas",
.model_type = "classification",
.grid_size = 2,
.num_cores = 4
)
hai_auto_wflw_metrics(auto_knn)
# A tibble: 22 × 9
neighbors weight_func dist_power .metric .esti…¹ mean n std_err .config
<int> <chr> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
1 8 rank 0.888 accuracy multic… 0.95 25 0.00652 Prepro…
2 8 rank 0.888 bal_acc… macro 0.962 25 0.00471 Prepro…
3 8 rank 0.888 f_meas macro 0.947 25 0.00649 Prepro…
4 8 rank 0.888 kap multic… 0.922 25 0.0102 Prepro…
5 8 rank 0.888 mcc multic… 0.925 25 0.00964 Prepro…
6 8 rank 0.888 npv macro 0.975 25 0.00351 Prepro…
7 8 rank 0.888 ppv macro 0.949 25 0.00663 Prepro…
8 8 rank 0.888 precisi… macro 0.949 25 0.00663 Prepro…
9 8 rank 0.888 recall macro 0.949 25 0.00633 Prepro…
10 8 rank 0.888 sensiti… macro 0.949 25 0.00633 Prepro…
# … with 12 more rows, and abbreviated variable name ¹.estimator
As we see this pulls out the full metric table from the workflow.
Voila!