%>% |
c(“lhs”, “rhs”) |
%>%(“lhs”, “rhs”) |
:= |
c(“x”, “y”) |
:=(“x”, “y”) |
as_label |
x |
as_label(x) |
as_name |
x |
as_name(x) |
bootstrap_density_augment |
.data |
bootstrap_density_augment(.data) |
bootstrap_p_augment |
c(“.data”, “.value”, “.names”) |
bootstrap_p_augment(“.data”, “.value”, “.names”) |
bootstrap_p_vec |
.x |
bootstrap_p_vec(.x) |
bootstrap_q_augment |
c(“.data”, “.value”, “.names”) |
bootstrap_q_augment(“.data”, “.value”, “.names”) |
bootstrap_q_vec |
.x |
bootstrap_q_vec(.x) |
bootstrap_stat_plot |
c(“.data”, “.value”, “.stat”, “.show_groups”, “.show_ci_labels”, “.interactive”) |
bootstrap_stat_plot(“.data”, “.value”, “.stat”, “.show_groups”, “.show_ci_labels”, “.interactive”) |
bootstrap_unnest_tbl |
.data |
bootstrap_unnest_tbl(.data) |
cgmean |
.x |
cgmean(.x) |
chmean |
.x |
chmean(.x) |
ci_hi |
c(“.x”, “.na_rm”) |
ci_hi(“.x”, “.na_rm”) |
ci_lo |
c(“.x”, “.na_rm”) |
ci_lo(“.x”, “.na_rm”) |
ckurtosis |
.x |
ckurtosis(.x) |
cmean |
.x |
cmean(.x) |
cmedian |
.x |
cmedian(.x) |
color_blind |
NULL |
color_blind(NULL) |
csd |
.x |
csd(.x) |
cskewness |
.x |
cskewness(.x) |
cvar |
.x |
cvar(.x) |
dist_type_extractor |
.x |
dist_type_extractor(.x) |
enquo |
arg |
enquo(arg) |
enquos |
c(“…”, “.named”, “.ignore_empty”, “.unquote_names”, “.homonyms”, “.check_assign”) |
enquos(“…”, “.named”, “.ignore_empty”, “.unquote_names”, “.homonyms”, “.check_assign”) |
td_scale_color_colorblind |
c(“…”, “theme”) |
td_scale_color_colorblind(“…”, “theme”) |
td_scale_fill_colorblind |
c(“…”, “theme”) |
td_scale_fill_colorblind(“…”, “theme”) |
tidy_autoplot |
c(“.data”, “.plot_type”, “.line_size”, “.geom_point”, “.point_size”, “.geom_rug”, “.geom_smooth”, “.geom_jitter”, “.interactive”) |
tidy_autoplot(“.data”, “.plot_type”, “.line_size”, “.geom_point”, “.point_size”, “.geom_rug”, “.geom_smooth”, “.geom_jitter”, “.interactive”) |
tidy_bernoulli |
c(“.n”, “.prob”, “.num_sims”) |
tidy_bernoulli(“.n”, “.prob”, “.num_sims”) |
tidy_beta |
c(“.n”, “.shape1”, “.shape2”, “.ncp”, “.num_sims”) |
tidy_beta(“.n”, “.shape1”, “.shape2”, “.ncp”, “.num_sims”) |
tidy_binomial |
c(“.n”, “.size”, “.prob”, “.num_sims”) |
tidy_binomial(“.n”, “.size”, “.prob”, “.num_sims”) |
tidy_bootstrap |
c(“.x”, “.num_sims”, “.proportion”, “.distribution_type”) |
tidy_bootstrap(“.x”, “.num_sims”, “.proportion”, “.distribution_type”) |
tidy_burr |
c(“.n”, “.shape1”, “.shape2”, “.rate”, “.scale”, “.num_sims”) |
tidy_burr(“.n”, “.shape1”, “.shape2”, “.rate”, “.scale”, “.num_sims”) |
tidy_cauchy |
c(“.n”, “.location”, “.scale”, “.num_sims”) |
tidy_cauchy(“.n”, “.location”, “.scale”, “.num_sims”) |
tidy_chisquare |
c(“.n”, “.df”, “.ncp”, “.num_sims”) |
tidy_chisquare(“.n”, “.df”, “.ncp”, “.num_sims”) |
tidy_combine_distributions |
… |
tidy_combine_distributions(…) |
tidy_combined_autoplot |
c(“.data”, “.plot_type”, “.line_size”, “.geom_point”, “.point_size”, “.geom_rug”, “.geom_smooth”, “.geom_jitter”, “.interactive”) |
tidy_combined_autoplot(“.data”, “.plot_type”, “.line_size”, “.geom_point”, “.point_size”, “.geom_rug”, “.geom_smooth”, “.geom_jitter”, “.interactive”) |
tidy_distribution_comparison |
c(“.x”, “.distribution_type”) |
tidy_distribution_comparison(“.x”, “.distribution_type”) |
tidy_distribution_summary_tbl |
c(“.data”, “…”) |
tidy_distribution_summary_tbl(“.data”, “…”) |
tidy_empirical |
c(“.x”, “.num_sims”, “.distribution_type”) |
tidy_empirical(“.x”, “.num_sims”, “.distribution_type”) |
tidy_exponential |
c(“.n”, “.rate”, “.num_sims”) |
tidy_exponential(“.n”, “.rate”, “.num_sims”) |
tidy_f |
c(“.n”, “.df1”, “.df2”, “.ncp”, “.num_sims”) |
tidy_f(“.n”, “.df1”, “.df2”, “.ncp”, “.num_sims”) |
tidy_four_autoplot |
c(“.data”, “.line_size”, “.geom_point”, “.point_size”, “.geom_rug”, “.geom_smooth”, “.geom_jitter”, “.interactive”) |
tidy_four_autoplot(“.data”, “.line_size”, “.geom_point”, “.point_size”, “.geom_rug”, “.geom_smooth”, “.geom_jitter”, “.interactive”) |
tidy_gamma |
c(“.n”, “.shape”, “.scale”, “.num_sims”) |
tidy_gamma(“.n”, “.shape”, “.scale”, “.num_sims”) |
tidy_generalized_beta |
c(“.n”, “.shape1”, “.shape2”, “.shape3”, “.rate”, “.scale”, “.num_sims”) |
tidy_generalized_beta(“.n”, “.shape1”, “.shape2”, “.shape3”, “.rate”, “.scale”, “.num_sims”) |
tidy_generalized_pareto |
c(“.n”, “.shape1”, “.shape2”, “.rate”, “.scale”, “.num_sims”) |
tidy_generalized_pareto(“.n”, “.shape1”, “.shape2”, “.rate”, “.scale”, “.num_sims”) |
tidy_geometric |
c(“.n”, “.prob”, “.num_sims”) |
tidy_geometric(“.n”, “.prob”, “.num_sims”) |
tidy_hypergeometric |
c(“.n”, “.m”, “.nn”, “.k”, “.num_sims”) |
tidy_hypergeometric(“.n”, “.m”, “.nn”, “.k”, “.num_sims”) |
tidy_inverse_burr |
c(“.n”, “.shape1”, “.shape2”, “.rate”, “.scale”, “.num_sims”) |
tidy_inverse_burr(“.n”, “.shape1”, “.shape2”, “.rate”, “.scale”, “.num_sims”) |
tidy_inverse_exponential |
c(“.n”, “.rate”, “.scale”, “.num_sims”) |
tidy_inverse_exponential(“.n”, “.rate”, “.scale”, “.num_sims”) |
tidy_inverse_gamma |
c(“.n”, “.shape”, “.rate”, “.scale”, “.num_sims”) |
tidy_inverse_gamma(“.n”, “.shape”, “.rate”, “.scale”, “.num_sims”) |
tidy_inverse_normal |
c(“.n”, “.mean”, “.shape”, “.dispersion”, “.num_sims”) |
tidy_inverse_normal(“.n”, “.mean”, “.shape”, “.dispersion”, “.num_sims”) |
tidy_inverse_pareto |
c(“.n”, “.shape”, “.scale”, “.num_sims”) |
tidy_inverse_pareto(“.n”, “.shape”, “.scale”, “.num_sims”) |
tidy_inverse_weibull |
c(“.n”, “.shape”, “.rate”, “.scale”, “.num_sims”) |
tidy_inverse_weibull(“.n”, “.shape”, “.rate”, “.scale”, “.num_sims”) |
tidy_kurtosis_vec |
.x |
tidy_kurtosis_vec(.x) |
tidy_logistic |
c(“.n”, “.location”, “.scale”, “.num_sims”) |
tidy_logistic(“.n”, “.location”, “.scale”, “.num_sims”) |
tidy_lognormal |
c(“.n”, “.meanlog”, “.sdlog”, “.num_sims”) |
tidy_lognormal(“.n”, “.meanlog”, “.sdlog”, “.num_sims”) |
tidy_mixture_density |
… |
tidy_mixture_density(…) |
tidy_multi_dist_autoplot |
c(“.data”, “.plot_type”, “.line_size”, “.geom_point”, “.point_size”, “.geom_rug”, “.geom_smooth”, “.geom_jitter”, “.interactive”) |
tidy_multi_dist_autoplot(“.data”, “.plot_type”, “.line_size”, “.geom_point”, “.point_size”, “.geom_rug”, “.geom_smooth”, “.geom_jitter”, “.interactive”) |
tidy_multi_single_dist |
c(“.tidy_dist”, “.param_list”) |
tidy_multi_single_dist(“.tidy_dist”, “.param_list”) |
tidy_negative_binomial |
c(“.n”, “.size”, “.prob”, “.num_sims”) |
tidy_negative_binomial(“.n”, “.size”, “.prob”, “.num_sims”) |
tidy_normal |
c(“.n”, “.mean”, “.sd”, “.num_sims”) |
tidy_normal(“.n”, “.mean”, “.sd”, “.num_sims”) |
tidy_paralogistic |
c(“.n”, “.shape”, “.rate”, “.scale”, “.num_sims”) |
tidy_paralogistic(“.n”, “.shape”, “.rate”, “.scale”, “.num_sims”) |
tidy_pareto |
c(“.n”, “.shape”, “.scale”, “.num_sims”) |
tidy_pareto(“.n”, “.shape”, “.scale”, “.num_sims”) |
tidy_pareto1 |
c(“.n”, “.shape”, “.min”, “.num_sims”) |
tidy_pareto1(“.n”, “.shape”, “.min”, “.num_sims”) |
tidy_poisson |
c(“.n”, “.lambda”, “.num_sims”) |
tidy_poisson(“.n”, “.lambda”, “.num_sims”) |
tidy_random_walk |
c(“.data”, “.initial_value”, “.sample”, “.replace”, “.value_type”) |
tidy_random_walk(“.data”, “.initial_value”, “.sample”, “.replace”, “.value_type”) |
tidy_random_walk_autoplot |
c(“.data”, “.line_size”, “.geom_rug”, “.geom_smooth”, “.interactive”) |
tidy_random_walk_autoplot(“.data”, “.line_size”, “.geom_rug”, “.geom_smooth”, “.interactive”) |
tidy_range_statistic |
.x |
tidy_range_statistic(.x) |
tidy_scale_zero_one_vec |
.x |
tidy_scale_zero_one_vec(.x) |
tidy_skewness_vec |
.x |
tidy_skewness_vec(.x) |
tidy_stat_tbl |
c(“.data”, “.x”, “.fns”, “.return_type”, “.use_data_table”, “…”) |
tidy_stat_tbl(“.data”, “.x”, “.fns”, “.return_type”, “.use_data_table”, “…”) |
tidy_t |
c(“.n”, “.df”, “.ncp”, “.num_sims”) |
tidy_t(“.n”, “.df”, “.ncp”, “.num_sims”) |
tidy_uniform |
c(“.n”, “.min”, “.max”, “.num_sims”) |
tidy_uniform(“.n”, “.min”, “.max”, “.num_sims”) |
tidy_weibull |
c(“.n”, “.shape”, “.scale”, “.num_sims”) |
tidy_weibull(“.n”, “.shape”, “.scale”, “.num_sims”) |
tidy_zero_truncated_binomial |
c(“.n”, “.size”, “.prob”, “.num_sims”) |
tidy_zero_truncated_binomial(“.n”, “.size”, “.prob”, “.num_sims”) |
tidy_zero_truncated_geometric |
c(“.n”, “.prob”, “.num_sims”) |
tidy_zero_truncated_geometric(“.n”, “.prob”, “.num_sims”) |
tidy_zero_truncated_negative_binomial |
c(“.n”, “.size”, “.prob”, “.num_sims”) |
tidy_zero_truncated_negative_binomial(“.n”, “.size”, “.prob”, “.num_sims”) |
tidy_zero_truncated_poisson |
c(“.n”, “.lambda”, “.num_sims”) |
tidy_zero_truncated_poisson(“.n”, “.lambda”, “.num_sims”) |
util_bernoulli_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_bernoulli_param_estimate(“.x”, “.auto_gen_empirical”) |
util_bernoulli_stats_tbl |
.data |
util_bernoulli_stats_tbl(.data) |
util_beta_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_beta_param_estimate(“.x”, “.auto_gen_empirical”) |
util_beta_stats_tbl |
.data |
util_beta_stats_tbl(.data) |
util_binomial_param_estimate |
c(“.x”, “.size”, “.auto_gen_empirical”) |
util_binomial_param_estimate(“.x”, “.size”, “.auto_gen_empirical”) |
util_binomial_stats_tbl |
.data |
util_binomial_stats_tbl(.data) |
util_cauchy_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_cauchy_param_estimate(“.x”, “.auto_gen_empirical”) |
util_cauchy_stats_tbl |
.data |
util_cauchy_stats_tbl(.data) |
util_chisquare_stats_tbl |
.data |
util_chisquare_stats_tbl(.data) |
util_exponential_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_exponential_param_estimate(“.x”, “.auto_gen_empirical”) |
util_exponential_stats_tbl |
.data |
util_exponential_stats_tbl(.data) |
util_f_stats_tbl |
.data |
util_f_stats_tbl(.data) |
util_gamma_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_gamma_param_estimate(“.x”, “.auto_gen_empirical”) |
util_gamma_stats_tbl |
.data |
util_gamma_stats_tbl(.data) |
util_geometric_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_geometric_param_estimate(“.x”, “.auto_gen_empirical”) |
util_geometric_stats_tbl |
.data |
util_geometric_stats_tbl(.data) |
util_hypergeometric_param_estimate |
c(“.x”, “.m”, “.total”, “.k”, “.auto_gen_empirical”) |
util_hypergeometric_param_estimate(“.x”, “.m”, “.total”, “.k”, “.auto_gen_empirical”) |
util_hypergeometric_stats_tbl |
.data |
util_hypergeometric_stats_tbl(.data) |
util_logistic_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_logistic_param_estimate(“.x”, “.auto_gen_empirical”) |
util_logistic_stats_tbl |
.data |
util_logistic_stats_tbl(.data) |
util_lognormal_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_lognormal_param_estimate(“.x”, “.auto_gen_empirical”) |
util_lognormal_stats_tbl |
.data |
util_lognormal_stats_tbl(.data) |
util_negative_binomial_param_estimate |
c(“.x”, “.size”, “.auto_gen_empirical”) |
util_negative_binomial_param_estimate(“.x”, “.size”, “.auto_gen_empirical”) |
util_negative_binomial_stats_tbl |
.data |
util_negative_binomial_stats_tbl(.data) |
util_normal_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_normal_param_estimate(“.x”, “.auto_gen_empirical”) |
util_normal_stats_tbl |
.data |
util_normal_stats_tbl(.data) |
util_pareto_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_pareto_param_estimate(“.x”, “.auto_gen_empirical”) |
util_pareto_stats_tbl |
.data |
util_pareto_stats_tbl(.data) |
util_poisson_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_poisson_param_estimate(“.x”, “.auto_gen_empirical”) |
util_poisson_stats_tbl |
.data |
util_poisson_stats_tbl(.data) |
util_t_stats_tbl |
.data |
util_t_stats_tbl(.data) |
util_uniform_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_uniform_param_estimate(“.x”, “.auto_gen_empirical”) |
util_uniform_stats_tbl |
.data |
util_uniform_stats_tbl(.data) |
util_weibull_param_estimate |
c(“.x”, “.auto_gen_empirical”) |
util_weibull_param_estimate(“.x”, “.auto_gen_empirical”) |
util_weibull_stats_tbl |
.data |
util_weibull_stats_tbl(.data) |