Make a Model Spec tibble.
Arguments
- .model_tbl
This is the data that should be coming from inside of the regression/classification to parsnip spec functions.
Examples
make_regression_base_tbl() |>
internal_make_spec_tbl()
#> # A tibble: 39 × 5
#> .model_id .parsnip_engine .parsnip_mode .parsnip_fns model_spec
#> <int> <chr> <chr> <chr> <list>
#> 1 1 lm regression linear_reg <spec[+]>
#> 2 2 brulee regression linear_reg <spec[+]>
#> 3 3 gee regression linear_reg <spec[+]>
#> 4 4 glm regression linear_reg <spec[+]>
#> 5 5 glmer regression linear_reg <spec[+]>
#> 6 6 glmnet regression linear_reg <spec[+]>
#> 7 7 gls regression linear_reg <spec[+]>
#> 8 8 lme regression linear_reg <spec[+]>
#> 9 9 lmer regression linear_reg <spec[+]>
#> 10 10 stan regression linear_reg <spec[+]>
#> # ℹ 29 more rows
make_classification_base_tbl() |>
internal_make_spec_tbl()
#> # A tibble: 31 × 5
#> .model_id .parsnip_engine .parsnip_mode .parsnip_fns model_spec
#> <int> <chr> <chr> <chr> <list>
#> 1 1 earth classification bag_mars <spec[+]>
#> 2 2 earth classification discrim_flexible <spec[+]>
#> 3 3 dbarts classification bart <spec[+]>
#> 4 4 MASS classification discrim_linear <spec[+]>
#> 5 5 mda classification discrim_linear <spec[+]>
#> 6 6 sda classification discrim_linear <spec[+]>
#> 7 7 sparsediscrim classification discrim_linear <spec[+]>
#> 8 8 MASS classification discrim_quad <spec[+]>
#> 9 9 sparsediscrim classification discrim_quad <spec[+]>
#> 10 10 klaR classification discrim_regularized <spec[+]>
#> # ℹ 21 more rows