Skip to contents

Compare some empirical data set against different distributions to help find the distribution that could be the best fit.

Usage

tidy_distribution_comparison(
  .x,
  .distribution_type = "continuous",
  .round_to_place = 3
)

Arguments

.x

The data set being passed to the function

.distribution_type

What kind of data is it, can be one of continuous or discrete

.round_to_place

How many decimal places should the parameter estimates be rounded off to for distibution construction. The default is 3

Value

An invisible list object. A tibble is printed.

Details

The purpose of this function is to take some data set provided and to try to find a distribution that may fit the best. A parameter of .distribution_type must be set to either continuous or discrete in order for this the function to try the appropriate types of distributions.

The following distributions are used:

Continuous:

  • tidy_beta

  • tidy_cauchy

  • tidy_chisquare

  • tidy_exponential

  • tidy_gamma

  • tidy_logistic

  • tidy_lognormal

  • tidy_normal

  • tidy_pareto

  • tidy_uniform

  • tidy_weibull

Discrete:

  • tidy_binomial

  • tidy_geometric

  • tidy_hypergeometric

  • tidy_poisson

The function itself returns a list output of tibbles. Here are the tibbles that are returned:

  • comparison_tbl

  • deviance_tbl

  • total_deviance_tbl

  • aic_tbl

  • kolmogorov_smirnov_tbl

  • multi_metric_tbl

The comparison_tbl is a long tibble that lists the values of the density function against the given data.

The deviance_tbl and the total_deviance_tbl just give the simple difference from the actual density to the estimated density for the given estimated distribution.

The aic_tbl will provide the AIC for liklehood of the distribution.

The kolmogorov_smirnov_tbl for now provides a two.sided estimate of the ks.test of the estimated density against the empirical.

The multi_metric_tbl will summarise all of these metrics into a single tibble.

Author

Steven P. Sanderson II, MPH

Examples

xc <- mtcars$mpg
output_c <- tidy_distribution_comparison(xc, "continuous")
#> For the beta distribution, its mean 'mu' should be 0 < mu < 1. The data will
#> therefore be scaled to enforce this.
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> Warning: NaNs produced
#> There was no need to scale the data.
#> Warning: There were 97 warnings in `dplyr::mutate()`.
#> The first warning was:
#>  In argument: `aic_value = dplyr::case_when(...)`.
#> Caused by warning in `actuar::dpareto()`:
#> ! NaNs produced
#>  Run dplyr::last_dplyr_warnings() to see the 96 remaining warnings.

xd <- trunc(xc)
output_d <- tidy_distribution_comparison(xd, "discrete")
#> There was no need to scale the data.
#> Warning: There were 12 warnings in `dplyr::mutate()`.
#> The first warning was:
#>  In argument: `aic_value = dplyr::case_when(...)`.
#> Caused by warning in `actuar::dpareto()`:
#> ! NaNs produced
#>  Run dplyr::last_dplyr_warnings() to see the 11 remaining warnings.

output_c
#> $comparison_tbl
#> # A tibble: 384 × 8
#>    sim_number     x     y    dx       dy     p     q dist_type
#>    <fct>      <int> <dbl> <dbl>    <dbl> <dbl> <dbl> <fct>    
#>  1 1              1  21    2.97 0.000114 0.625  10.4 Empirical
#>  2 1              2  21    4.21 0.000455 0.625  10.4 Empirical
#>  3 1              3  22.8  5.44 0.00142  0.781  13.3 Empirical
#>  4 1              4  21.4  6.68 0.00355  0.688  14.3 Empirical
#>  5 1              5  18.7  7.92 0.00721  0.469  14.7 Empirical
#>  6 1              6  18.1  9.16 0.0124   0.438  15   Empirical
#>  7 1              7  14.3 10.4  0.0192   0.125  15.2 Empirical
#>  8 1              8  24.4 11.6  0.0281   0.812  15.2 Empirical
#>  9 1              9  22.8 12.9  0.0395   0.781  15.5 Empirical
#> 10 1             10  19.2 14.1  0.0516   0.531  15.8 Empirical
#> # ℹ 374 more rows
#> 
#> $deviance_tbl
#> # A tibble: 384 × 2
#>    name                        value
#>    <chr>                       <dbl>
#>  1 Empirical                  0.451 
#>  2 Beta c(1.107, 1.577, 0)    0.287 
#>  3 Cauchy c(19.2, 7.375)     -0.0169
#>  4 Chisquare c(20.243, 0)    -0.106 
#>  5 Exponential c(0.05)        0.230 
#>  6 Gamma c(11.47, 1.752)     -0.0322
#>  7 Logistic c(20.091, 3.27)   0.193 
#>  8 Lognormal c(2.958, 0.293)  0.283 
#>  9 Pareto c(10.4, 1.624)      0.446 
#> 10 Uniform c(8.341, 31.841)   0.242 
#> # ℹ 374 more rows
#> 
#> $total_deviance_tbl
#> # A tibble: 11 × 2
#>    dist_with_params          abs_tot_deviance
#>    <chr>                                <dbl>
#>  1 Gamma c(11.47, 1.752)               0.0235
#>  2 Chisquare c(20.243, 0)              0.462 
#>  3 Beta c(1.107, 1.577, 0)             0.640 
#>  4 Uniform c(8.341, 31.841)            1.11  
#>  5 Weibull c(3.579, 22.288)            1.34  
#>  6 Cauchy c(19.2, 7.375)               1.56  
#>  7 Logistic c(20.091, 3.27)            2.74  
#>  8 Lognormal c(2.958, 0.293)           4.72  
#>  9 Gaussian c(20.091, 5.932)           4.74  
#> 10 Pareto c(10.4, 1.624)               6.95  
#> 11 Exponential c(0.05)                 7.67  
#> 
#> $aic_tbl
#> # A tibble: 11 × 3
#>    dist_type                 aic_value abs_aic
#>    <fct>                         <dbl>   <dbl>
#>  1 Beta c(1.107, 1.577, 0)         NA      NA 
#>  2 Cauchy c(19.2, 7.375)          218.    218.
#>  3 Chisquare c(20.243, 0)          NA      NA 
#>  4 Exponential c(0.05)            258.    258.
#>  5 Gamma c(11.47, 1.752)          206.    206.
#>  6 Logistic c(20.091, 3.27)       209.    209.
#>  7 Lognormal c(2.958, 0.293)      206.    206.
#>  8 Pareto c(10.4, 1.624)          260.    260.
#>  9 Uniform c(8.341, 31.841)       206.    206.
#> 10 Weibull c(3.579, 22.288)       209.    209.
#> 11 Gaussian c(20.091, 5.932)      209.    209.
#> 
#> $kolmogorov_smirnov_tbl
#> # A tibble: 11 × 6
#>    dist_type              ks_statistic ks_pvalue ks_method alternative dist_char
#>    <fct>                         <dbl>     <dbl> <chr>     <chr>       <chr>    
#>  1 Beta c(1.107, 1.577, …        0.75   0.000500 Monte-Ca… two-sided   Beta c(1…
#>  2 Cauchy c(19.2, 7.375)         0.469  0.00200  Monte-Ca… two-sided   Cauchy c…
#>  3 Chisquare c(20.243, 0)        0.219  0.446    Monte-Ca… two-sided   Chisquar…
#>  4 Exponential c(0.05)           0.469  0.00100  Monte-Ca… two-sided   Exponent…
#>  5 Gamma c(11.47, 1.752)         0.156  0.847    Monte-Ca… two-sided   Gamma c(…
#>  6 Logistic c(20.091, 3.…        0.125  0.976    Monte-Ca… two-sided   Logistic…
#>  7 Lognormal c(2.958, 0.…        0.281  0.160    Monte-Ca… two-sided   Lognorma…
#>  8 Pareto c(10.4, 1.624)         0.719  0.000500 Monte-Ca… two-sided   Pareto c…
#>  9 Uniform c(8.341, 31.8…        0.188  0.621    Monte-Ca… two-sided   Uniform …
#> 10 Weibull c(3.579, 22.2…        0.219  0.443    Monte-Ca… two-sided   Weibull …
#> 11 Gaussian c(20.091, 5.…        0.156  0.833    Monte-Ca… two-sided   Gaussian…
#> 
#> $multi_metric_tbl
#> # A tibble: 11 × 8
#>    dist_type abs_tot_deviance aic_value abs_aic ks_statistic ks_pvalue ks_method
#>    <fct>                <dbl>     <dbl>   <dbl>        <dbl>     <dbl> <chr>    
#>  1 Gamma c(…           0.0235      206.    206.        0.156  0.847    Monte-Ca…
#>  2 Chisquar…           0.462        NA      NA         0.219  0.446    Monte-Ca…
#>  3 Beta c(1…           0.640        NA      NA         0.75   0.000500 Monte-Ca…
#>  4 Uniform …           1.11        206.    206.        0.188  0.621    Monte-Ca…
#>  5 Weibull …           1.34        209.    209.        0.219  0.443    Monte-Ca…
#>  6 Cauchy c…           1.56        218.    218.        0.469  0.00200  Monte-Ca…
#>  7 Logistic…           2.74        209.    209.        0.125  0.976    Monte-Ca…
#>  8 Lognorma…           4.72        206.    206.        0.281  0.160    Monte-Ca…
#>  9 Gaussian…           4.74        209.    209.        0.156  0.833    Monte-Ca…
#> 10 Pareto c…           6.95        260.    260.        0.719  0.000500 Monte-Ca…
#> 11 Exponent…           7.67        258.    258.        0.469  0.00100  Monte-Ca…
#> # ℹ 1 more variable: alternative <chr>
#> 
#> attr(,".x")
#>  [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4
#> [16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7
#> [31] 15.0 21.4
#> attr(,".n")
#> [1] 32
output_d
#> $comparison_tbl
#> # A tibble: 160 × 8
#>    sim_number     x     y    dx       dy     p     q dist_type
#>    <fct>      <int> <dbl> <dbl>    <dbl> <dbl> <dbl> <fct>    
#>  1 1              1    21  2.95 0.000120 0.719    10 Empirical
#>  2 1              2    21  4.14 0.000487 0.719    10 Empirical
#>  3 1              3    22  5.34 0.00154  0.781    13 Empirical
#>  4 1              4    21  6.54 0.00383  0.719    14 Empirical
#>  5 1              5    18  7.74 0.00766  0.469    14 Empirical
#>  6 1              6    18  8.93 0.0129   0.469    15 Empirical
#>  7 1              7    14 10.1  0.0194   0.156    15 Empirical
#>  8 1              8    24 11.3  0.0282   0.812    15 Empirical
#>  9 1              9    22 12.5  0.0397   0.781    15 Empirical
#> 10 1             10    19 13.7  0.0524   0.562    15 Empirical
#> # ℹ 150 more rows
#> 
#> $deviance_tbl
#> # A tibble: 160 × 2
#>    name                             value
#>    <chr>                            <dbl>
#>  1 Empirical                     0.478   
#>  2 Binomial c(32, 0.031)         0.145   
#>  3 Geometric c(0.048)           -0.000463
#>  4 Hypergeometric c(21, 11, 21) -0.322   
#>  5 Poisson c(19.688)            -0.0932  
#>  6 Empirical                     0.478   
#>  7 Binomial c(32, 0.031)         0.478   
#>  8 Geometric c(0.048)            0.361   
#>  9 Hypergeometric c(21, 11, 21) -0.122   
#> 10 Poisson c(19.688)             0.193   
#> # ℹ 150 more rows
#> 
#> $total_deviance_tbl
#> # A tibble: 4 × 2
#>   dist_with_params             abs_tot_deviance
#>   <chr>                                   <dbl>
#> 1 Hypergeometric c(21, 11, 21)             2.52
#> 2 Binomial c(32, 0.031)                    2.81
#> 3 Poisson c(19.688)                        3.19
#> 4 Geometric c(0.048)                       6.07
#> 
#> $aic_tbl
#> # A tibble: 4 × 3
#>   dist_type                    aic_value abs_aic
#>   <fct>                            <dbl>   <dbl>
#> 1 Binomial c(32, 0.031)             Inf     Inf 
#> 2 Geometric c(0.048)                258.    258.
#> 3 Hypergeometric c(21, 11, 21)      NaN     NaN 
#> 4 Poisson c(19.688)                 210.    210.
#> 
#> $kolmogorov_smirnov_tbl
#> # A tibble: 4 × 6
#>   dist_type               ks_statistic ks_pvalue ks_method alternative dist_char
#>   <fct>                          <dbl>     <dbl> <chr>     <chr>       <chr>    
#> 1 Binomial c(32, 0.031)          0.719  0.000500 Monte-Ca… two-sided   Binomial…
#> 2 Geometric c(0.048)             0.5    0.00200  Monte-Ca… two-sided   Geometri…
#> 3 Hypergeometric c(21, 1…        0.625  0.000500 Monte-Ca… two-sided   Hypergeo…
#> 4 Poisson c(19.688)              0.156  0.850    Monte-Ca… two-sided   Poisson …
#> 
#> $multi_metric_tbl
#> # A tibble: 4 × 8
#>   dist_type  abs_tot_deviance aic_value abs_aic ks_statistic ks_pvalue ks_method
#>   <fct>                 <dbl>     <dbl>   <dbl>        <dbl>     <dbl> <chr>    
#> 1 Hypergeom…             2.52      NaN     NaN         0.625  0.000500 Monte-Ca…
#> 2 Binomial …             2.81      Inf     Inf         0.719  0.000500 Monte-Ca…
#> 3 Poisson c…             3.19      210.    210.        0.156  0.850    Monte-Ca…
#> 4 Geometric…             6.07      258.    258.        0.5    0.00200  Monte-Ca…
#> # ℹ 1 more variable: alternative <chr>
#> 
#> attr(,".x")
#>  [1] 21 21 22 21 18 18 14 24 22 19 17 16 17 15 10 10 14 32 30 33 21 15 15 13 19
#> [26] 27 26 30 15 19 15 21
#> attr(,".n")
#> [1] 32