This is a boilerplate function to create automatically the following:
recipe
model specification
workflow
tuned model (grid ect)
Usage
hai_auto_cubist(
.data,
.rec_obj,
.splits_obj = NULL,
.rsamp_obj = NULL,
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.best_metric = "rmse"
)
Arguments
- .data
The data being passed to the function. The time-series object.
- .rec_obj
This is the recipe object you want to use. You can use
hai_cubist_data_prepper()
an automatic recipe_object.- .splits_obj
NULL is the default, when NULL then one will be created.
- .rsamp_obj
NULL is the default, when NULL then one will be created. It will default to creating an
rsample::mc_cv()
object.- .tune
Default is TRUE, this will create a tuning grid and tuned workflow
- .grid_size
Default is 10
- .num_cores
Default is 1
- .best_metric
Default is "rmse". The only
.model_type
you can use withCubist
isregression
so usehai_default_regression_metric_set()
to get the available metrics. Because of this the.model_type
parameter is omitted from this function.
Details
This uses the parsnip::cubist_rules()
with the engine
set to cubist
See also
Other Boiler_Plate:
hai_auto_c50()
,
hai_auto_earth()
,
hai_auto_glmnet()
,
hai_auto_knn()
,
hai_auto_ranger()
,
hai_auto_svm_poly()
,
hai_auto_svm_rbf()
,
hai_auto_wflw_metrics()
,
hai_auto_xgboost()
Other cubist:
hai_cubist_data_prepper()
Examples
if (FALSE) { # \dontrun{
data <- mtcars
rec_obj <- hai_cubist_data_prepper(data, mpg ~ .)
auto_cube <- hai_auto_cubist(
.data = data,
.rec_obj = rec_obj,
.best_metric = "rmse"
)
auto_cube$recipe_info
} # }