This is a boilerplate function to create automatically the following:
recipe
model specification
workflow
tuned model (grid ect)
Usage
hai_auto_knn(
.data,
.rec_obj,
.splits_obj = NULL,
.rsamp_obj = NULL,
.tune = TRUE,
.grid_size = 10,
.num_cores = 1,
.best_metric = "rmse",
.model_type = "regression"
)
Arguments
- .data
The data being passed to the function. The time-series object.
- .rec_obj
This is the recipe object you want to use. You can use
hai_knn_data_prepper()
an automatic recipe_object.- .splits_obj
NULL is the default, when NULL then one will be created.
- .rsamp_obj
NULL is the default, when NULL then one will be created. It will default to creating an
rsample::mc_cv()
object.- .tune
Default is TRUE, this will create a tuning grid and tuned workflow
- .grid_size
Default is 10
- .num_cores
Default is 1
- .best_metric
Default is "rmse". You can choose a metric depending on the model_type used. If
regression
then seehai_default_regression_metric_set()
, ifclassification
then seehai_default_classification_metric_set()
.- .model_type
Default is
regression
, can also beclassification
.
Details
This uses the parsnip::nearest_neighbor()
with the engine
set to kknn
See also
Other Boiler_Plate:
hai_auto_c50()
,
hai_auto_cubist()
,
hai_auto_earth()
,
hai_auto_glmnet()
,
hai_auto_ranger()
,
hai_auto_svm_poly()
,
hai_auto_svm_rbf()
,
hai_auto_wflw_metrics()
,
hai_auto_xgboost()
Examples
if (FALSE) { # \dontrun{
library(dplyr)
data <- iris
rec_obj <- hai_knn_data_prepper(data, Species ~ .)
auto_knn <- hai_auto_knn(
.data = data,
.rec_obj = rec_obj,
.best_metric = "f_meas",
.model_type = "classification"
)
auto_knn$recipe_info
} # }