Automatically prep a data.frame/tibble for use in the k-NN algorithm.
Arguments
- .data
The data that you are passing to the function. Can be any type of data that is accepted by the
data
parameter of therecipes::reciep()
function.- .recipe_formula
The formula that is going to be passed. For example if you are using the
iris
data then the formula would most likely be something likeSpecies ~ .
Details
This function will automatically prep your data.frame/tibble for use in the k-NN algorithm. The k-NN algorithm is a lazy learning classification algorithm. It expects data to be presented in a certain fashion.
This function will output a recipe specification.
See also
Other Preprocessor:
hai_c50_data_prepper()
,
hai_cubist_data_prepper()
,
hai_data_impute()
,
hai_data_poly()
,
hai_data_scale()
,
hai_data_transform()
,
hai_data_trig()
,
hai_earth_data_prepper()
,
hai_glmnet_data_prepper()
,
hai_ranger_data_prepper()
,
hai_svm_poly_data_prepper()
,
hai_svm_rbf_data_prepper()
,
hai_xgboost_data_prepper()
Other knn:
hai_glmnet_data_prepper()
Examples
library(ggplot2)
hai_knn_data_prepper(.data = Titanic, .recipe_formula = Survived ~ .)
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> outcome: 1
#> predictor: 4
#>
#> ── Operations
#> • Novel factor level assignment for: recipes::all_nominal_predictors()
#> • Dummy variables from: recipes::all_nominal_predictors()
#> • Zero variance filter on: recipes::all_predictors()
#> • Centering and scaling for: recipes::all_numeric()
rec_obj <- hai_knn_data_prepper(iris, Species ~ .)
get_juiced_data(rec_obj)
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 -0.898 1.02 -1.34 -1.31 setosa
#> 2 -1.14 -0.132 -1.34 -1.31 setosa
#> 3 -1.38 0.327 -1.39 -1.31 setosa
#> 4 -1.50 0.0979 -1.28 -1.31 setosa
#> 5 -1.02 1.25 -1.34 -1.31 setosa
#> 6 -0.535 1.93 -1.17 -1.05 setosa
#> 7 -1.50 0.786 -1.34 -1.18 setosa
#> 8 -1.02 0.786 -1.28 -1.31 setosa
#> 9 -1.74 -0.361 -1.34 -1.31 setosa
#> 10 -1.14 0.0979 -1.28 -1.44 setosa
#> # ℹ 140 more rows