Takes in a recipe and will impute missing values using a selected recipe. To call the recipe use a quoted argument like "median" or "bagged".
Usage
hai_data_impute(
.recipe_object = NULL,
...,
.seed_value = 123,
.type_of_imputation = "mean",
.number_of_trees = 25,
.neighbors = 5,
.mean_trim = 0,
.roll_statistic,
.roll_window = 5
)
Arguments
- .recipe_object
The data that you want to process
- ...
One or more selector functions to choose variables to be imputed. When used with imp_vars, these dots indicate which variables are used to predict the missing data in each variable. See selections() for more details
- .seed_value
To make results reproducible, set the seed.
- .type_of_imputation
This is a quoted argument and can be one of the following:
"bagged"
"knn"
"linear"
"lower"
"mean"
"median"
"mode"
"roll"
- .number_of_trees
This is used for the
recipes::step_impute_bag()
trees parameter. This should be an integer.- .neighbors
This should be filled in with an integer value if
.type_of_imputation
selected is "knn".- .mean_trim
This should be filled in with a fraction if
.type_of_imputation
selected is "mean".- .roll_statistic
This should be filled in with a single unquoted function that takes with it a single argument such as mean. This should be filled in if
.type_of_imputation
selected is "roll".- .roll_window
This should be filled in with an integer value if
.type_of_imputation
selected is "roll".
Details
This function will get your data ready for processing with many types of ml/ai models.
This is intended to be used inside of the data processor and therefore is an internal function. This documentation exists to explain the process and help the user understand the parameters that can be set in the pre-processor function.
See also
https://recipes.tidymodels.org/reference/index.html#section-step-functions-imputation/
step_impute_bag
https://recipes.tidymodels.org/reference/step_impute_bag.html
step_impute_knn
https://recipes.tidymodels.org/reference/step_impute_knn.html
step_impute_linear
https://recipes.tidymodels.org/reference/step_impute_linear.html
step_impute_lower
https://recipes.tidymodels.org/reference/step_impute_lower.html
step_impute_mean
https://recipes.tidymodels.org/reference/step_impute_mean.html
step_impute_median
https://recipes.tidymodels.org/reference/step_impute_median.html
step_impute_mode
https://recipes.tidymodels.org/reference/step_impute_mode.html
step_impute_roll
https://recipes.tidymodels.org/reference/step_impute_roll.html
Other Data Recipes:
hai_data_poly()
,
hai_data_scale()
,
hai_data_transform()
,
hai_data_trig()
,
pca_your_recipe()
Other Preprocessor:
hai_c50_data_prepper()
,
hai_cubist_data_prepper()
,
hai_data_poly()
,
hai_data_scale()
,
hai_data_transform()
,
hai_data_trig()
,
hai_earth_data_prepper()
,
hai_glmnet_data_prepper()
,
hai_knn_data_prepper()
,
hai_ranger_data_prepper()
,
hai_svm_poly_data_prepper()
,
hai_svm_rbf_data_prepper()
,
hai_xgboost_data_prepper()
Examples
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(recipes))
date_seq <- seq.Date(from = as.Date("2013-01-01"), length.out = 100, by = "month")
val_seq <- rep(c(rnorm(9), NA), times = 10)
df_tbl <- tibble(
date_col = date_seq,
value = val_seq
)
rec_obj <- recipe(value ~ ., df_tbl)
hai_data_impute(
.recipe_object = rec_obj,
value,
.type_of_imputation = "roll",
.roll_statistic = median
)$impute_rec_obj %>%
get_juiced_data()
#> # A tibble: 100 × 2
#> date_col value
#> <date> <dbl>
#> 1 2013-01-01 0.393
#> 2 2013-02-01 0.0421
#> 3 2013-03-01 1.18
#> 4 2013-04-01 -0.257
#> 5 2013-05-01 -1.06
#> 6 2013-06-01 0.199
#> 7 2013-07-01 0.651
#> 8 2013-08-01 0.344
#> 9 2013-09-01 1.48
#> 10 2013-10-01 0.369
#> # ℹ 90 more rows