Automatically prep a data.frame/tibble for use in the Ranger algorithm.
Arguments
- .data
The data that you are passing to the function. Can be any type of data that is accepted by the
data
parameter of therecipes::reciep()
function.- .recipe_formula
The formula that is going to be passed. For example if you are using the
diamonds
data then the formula would most likely be something likeprice ~ .
Details
This function will automatically prep your data.frame/tibble for use in the Ranger algorithm.
This function will output a recipe specification.
See also
https://parsnip.tidymodels.org/reference/rand_forest.html
Other Preprocessor:
hai_c50_data_prepper()
,
hai_cubist_data_prepper()
,
hai_data_impute()
,
hai_data_poly()
,
hai_data_scale()
,
hai_data_transform()
,
hai_data_trig()
,
hai_earth_data_prepper()
,
hai_glmnet_data_prepper()
,
hai_knn_data_prepper()
,
hai_svm_poly_data_prepper()
,
hai_svm_rbf_data_prepper()
,
hai_xgboost_data_prepper()
Other Ranger:
hai_auto_ranger()
Examples
library(ggplot2)
# Regression
hai_ranger_data_prepper(.data = diamonds, .recipe_formula = price ~ .)
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> outcome: 1
#> predictor: 9
#>
#> ── Operations
#> • Factor variables from: tidyselect::vars_select_helpers$where(is.character)
reg_obj <- hai_ranger_data_prepper(diamonds, price ~ .)
get_juiced_data(reg_obj)
#> # A tibble: 53,940 × 10
#> carat cut color clarity depth table x y z price
#> <dbl> <ord> <ord> <ord> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 0.23 Ideal E SI2 61.5 55 3.95 3.98 2.43 326
#> 2 0.21 Premium E SI1 59.8 61 3.89 3.84 2.31 326
#> 3 0.23 Good E VS1 56.9 65 4.05 4.07 2.31 327
#> 4 0.29 Premium I VS2 62.4 58 4.2 4.23 2.63 334
#> 5 0.31 Good J SI2 63.3 58 4.34 4.35 2.75 335
#> 6 0.24 Very Good J VVS2 62.8 57 3.94 3.96 2.48 336
#> 7 0.24 Very Good I VVS1 62.3 57 3.95 3.98 2.47 336
#> 8 0.26 Very Good H SI1 61.9 55 4.07 4.11 2.53 337
#> 9 0.22 Fair E VS2 65.1 61 3.87 3.78 2.49 337
#> 10 0.23 Very Good H VS1 59.4 61 4 4.05 2.39 338
#> # ℹ 53,930 more rows
# Classification
hai_ranger_data_prepper(Titanic, Survived ~ .)
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> outcome: 1
#> predictor: 4
#>
#> ── Operations
#> • Factor variables from: tidyselect::vars_select_helpers$where(is.character)
cla_obj <- hai_ranger_data_prepper(Titanic, Survived ~ .)
get_juiced_data(cla_obj)
#> # A tibble: 32 × 5
#> Class Sex Age n Survived
#> <fct> <fct> <fct> <dbl> <fct>
#> 1 1st Male Child 0 No
#> 2 2nd Male Child 0 No
#> 3 3rd Male Child 35 No
#> 4 Crew Male Child 0 No
#> 5 1st Female Child 0 No
#> 6 2nd Female Child 0 No
#> 7 3rd Female Child 17 No
#> 8 Crew Female Child 0 No
#> 9 1st Male Adult 118 No
#> 10 2nd Male Adult 154 No
#> # ℹ 22 more rows