This function takes in a vector as it's input and will return the skewness of that vector. The length of this vector must be at least four numbers. The skewness explains the 'tailedness' of the distribution of data.
((1/n) * sum(x - mu})^3) / ((()1/n) * sum(x - mu)^2)^(3/2)
See also
https://en.wikipedia.org/wiki/Skewness
Other Vector Function:
hai_fourier_discrete_vec()
,
hai_fourier_vec()
,
hai_hyperbolic_vec()
,
hai_kurtosis_vec()
,
hai_scale_zero_one_vec()
,
hai_scale_zscore_vec()
,
hai_winsorized_move_vec()
,
hai_winsorized_truncate_vec()
Examples
hai_skewness_vec(rnorm(100, 3, 2))
#> [1] -0.2140443