This function is a helper function. It will take in a set of workflows and then
perform the modeltime::modeltime_calibrate() and modeltime::plot_modeltime_forecast().
Usage
calibrate_and_plot(
...,
.type = "testing",
.splits_obj,
.data,
.print_info = TRUE,
.interactive = FALSE
)Arguments
- ...
The workflow(s) you want to add to the function.
- .type
Either the training(splits) or testing(splits) data.
- .splits_obj
The splits object.
- .data
The full data set.
- .print_info
The default is TRUE and will print out the calibration accuracy tibble and the resulting plotly plot.
- .interactive
The defaults is FALSE. This controls if a forecast plot is interactive or not via plotly.
See also
Other Utility:
auto_stationarize(),
internal_ts_backward_event_tbl(),
internal_ts_both_event_tbl(),
internal_ts_forward_event_tbl(),
model_extraction_helper(),
ts_get_date_columns(),
ts_info_tbl(),
ts_is_date_class(),
ts_lag_correlation(),
ts_model_auto_tune(),
ts_model_compare(),
ts_model_rank_tbl(),
ts_model_spec_tune_template(),
ts_qq_plot(),
ts_scedacity_scatter_plot(),
ts_to_tbl(),
util_difflog_ts(),
util_doublediff_ts(),
util_doubledifflog_ts(),
util_log_ts(),
util_singlediff_ts()
Examples
if (FALSE) { # \dontrun{
suppressPackageStartupMessages(library(timetk))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(recipes))
suppressPackageStartupMessages(library(rsample))
suppressPackageStartupMessages(library(parsnip))
suppressPackageStartupMessages(library(workflows))
data <- ts_to_tbl(AirPassengers) %>%
select(-index)
splits <- timetk::time_series_split(
data
, date_col
, assess = 12
, skip = 3
, cumulative = TRUE
)
rec_obj <- recipe(value ~ ., data = training(splits))
model_spec <- linear_reg(
mode = "regression"
, penalty = 0.1
, mixture = 0.5
) %>%
set_engine("lm")
wflw <- workflow() %>%
add_recipe(rec_obj) %>%
add_model(model_spec) %>%
fit(training(splits))
output <- calibrate_and_plot(
wflw
, .type = "training"
, .splits_obj = splits
, .data = data
, .print_info = FALSE
, .interactive = FALSE
)
} # }
