Double Differencing with Log Transformation to Make Time Series Stationary
Source:R/utils-doubledifflog-stationary.R
util_doubledifflog_ts.Rd
This function attempts to make a non-stationary time series stationary by applying double differencing with a logarithmic transformation. It iteratively increases the differencing order until stationarity is achieved or informs the user if the transformation is not possible.
Value
If the time series is already stationary or the double differencing with a logarithmic transformation is successful, it returns a list as described in the details section. If the transformation is not possible, it informs the user and returns a list with ret set to FALSE, indicating that the data could not be stationarized.
Details
The function calculates the frequency of the input time series using the stats::frequency
function
and checks if the minimum value of the time series is greater than 0. It then applies double differencing
with a logarithmic transformation incrementally until the Augmented Dickey-Fuller test indicates
stationarity (p-value < 0.05) or until the differencing order reaches the frequency of the data.
If double differencing with a logarithmic transformation successfully makes the time series stationary, it returns the stationary time series and related information as a list with the following elements:
stationary_ts: The stationary time series after the transformation.
ndiffs: The order of differencing applied to make it stationary.
adf_stats: Augmented Dickey-Fuller test statistics on the stationary time series.
trans_type: Transformation type, which is "double_diff_log" in this case.
ret: TRUE to indicate a successful transformation.
If the data either had a minimum value less than or equal to 0 or requires more differencing than its frequency allows, it informs the user that the data could not be stationarized.
See also
Other Utility:
auto_stationarize()
,
calibrate_and_plot()
,
internal_ts_backward_event_tbl()
,
internal_ts_both_event_tbl()
,
internal_ts_forward_event_tbl()
,
model_extraction_helper()
,
ts_get_date_columns()
,
ts_info_tbl()
,
ts_is_date_class()
,
ts_lag_correlation()
,
ts_model_auto_tune()
,
ts_model_compare()
,
ts_model_rank_tbl()
,
ts_model_spec_tune_template()
,
ts_qq_plot()
,
ts_scedacity_scatter_plot()
,
ts_to_tbl()
,
util_difflog_ts()
,
util_doublediff_ts()
,
util_log_ts()
,
util_singlediff_ts()
Examples
# Example 1: Using a time series dataset
util_doubledifflog_ts(AirPassengers)
#> Double Differencing of order 1 made the time series stationary
#> $stationary_ts
#> Jan Feb Mar Apr May
#> 1949 0.0599315450 -0.1351068163 -0.0410323405
#> 1950 -0.1520462214 0.1171022747 0.0211282048 -0.1559630954 -0.0334759292
#> 1951 -0.1703526544 -0.0011897681 0.1372467045 -0.2591816057 0.1417776255
#> 1952 -0.0987053985 0.0216175262 0.0184400436 -0.1339264957 0.0751822792
#> 1953 -0.1101071821 -0.0102565002 0.1857171458 -0.1899634367 -0.0216172197
#> 1954 -0.0955329714 -0.0964931168 0.3048215823 -0.2577790480 0.0650065945
#> 1955 -0.0653003019 -0.0931149952 0.1741094774 -0.1287474836 -0.0037521418
#> 1956 -0.1382078481 -0.0463098564 0.1598409997 -0.1475828510 0.0285467756
#> 1957 -0.0924787442 -0.0744499110 0.2132828402 -0.1905487172 0.0426435608
#> 1958 -0.0849649257 -0.0787286925 0.1964870639 -0.1690345611 0.0816420865
#> 1959 -0.0174895318 -0.1173143955 0.2228357169 -0.1964813709 0.0837794484
#> 1960 -0.0830437006 -0.0935778165 0.1335420218 0.0263637631 -0.0719461805
#> Jun Jul Aug Sep Oct
#> 1949 0.1735060916 -0.0175467375 -0.0919374953 -0.0845573880 -0.0489740046
#> 1950 0.2525936098 -0.0437804375 -0.1318521311 -0.0732034040 -0.0990425008
#> 1951 -0.0194552025 0.0772322010 -0.1115212744 -0.0783690671 -0.0489703553
#> 1952 0.1640197884 -0.1214246638 -0.0027258289 -0.1974618914 0.0565426503
#> 1953 0.0852029504 0.0235482200 -0.0530346967 -0.1675948883 0.0215399175
#> 1954 0.0902568899 0.0138499264 -0.1647323226 -0.0930901390 0.0002384892
#> 1955 0.1504401004 -0.0095694510 -0.1924103165 -0.0584925044 -0.0235534893
#> 1956 0.1463562224 -0.0630126191 -0.1187523214 -0.1122087518 -0.0167634099
#> 1957 0.1529722149 -0.0758554330 -0.0927402395 -0.1492062318 -0.0071757183
#> 1958 0.1387428423 -0.0598451001 -0.0929837952 -0.2512578528 0.1050510618
#> 1959 0.0578837743 0.0325720271 -0.1294221152 -0.2082966053 0.0595085504
#> 1960 0.1017068187 0.0253855845 -0.1767334525 -0.1503384318 0.0793151339
#> Nov Dec
#> 1949 -0.0012012013 0.2610263193
#> 1950 0.0180952250 0.3595946540
#> 1951 0.0233497089 0.2323708802
#> 1952 -0.0147181273 0.2251426335
#> 1953 -0.0426992749 0.2692493398
#> 1954 0.0025900336 0.2410320490
#> 1955 -0.0151928838 0.3046289378
#> 1956 0.0270664065 0.2429325621
#> 1957 0.0230770947 0.2258123867
#> 1958 -0.0286576015 0.2302607239
#> 1959 0.0117448950 0.2294118289
#> 1960 -0.0701678993 0.2695301530
#>
#> $ndiffs
#> [1] 1
#>
#> $adf_stats
#> $adf_stats$test_stat
#> [1] -7.858955
#>
#> $adf_stats$p_value
#> [1] 0.01
#>
#>
#> $trans_type
#> [1] "double_diff_log"
#>
#> $ret
#> [1] TRUE
#>
# Example 2: Using a different time series dataset
util_doubledifflog_ts(BJsales)$ret
#> Double Differencing of order 1 made the time series stationary
#> [1] TRUE