Skip to contents

This function will generate n random points from a Zero Truncated Poisson distribution with a user provided, .lambda, and number of random simulations to be produced. The function returns a tibble with the simulation number column the x column which corresponds to the n randomly generated points, the d_, p_ and q_ data points as well.

The data is returned un-grouped.

The columns that are output are:

  • sim_number The current simulation number.

  • x The current value of n for the current simulation.

  • y The randomly generated data point.

  • dx The x value from the stats::density() function.

  • dy The y value from the stats::density() function.

  • p The values from the resulting p_ function of the distribution family.

  • q The values from the resulting q_ function of the distribution family.

Usage

tidy_zero_truncated_poisson(
  .n = 50,
  .lambda = 1,
  .num_sims = 1,
  .return_tibble = TRUE
)

Arguments

.n

The number of randomly generated points you want.

.lambda

A vector of non-negative means.

.num_sims

The number of randomly generated simulations you want.

.return_tibble

A logical value indicating whether to return the result as a tibble. Default is TRUE.

Value

A tibble of randomly generated data.

Details

This function uses the underlying actuar::rztpois(), and its underlying p, d, and q functions. For more information please see actuar::rztpois()

Author

Steven P. Sanderson II, MPH

Examples

tidy_zero_truncated_poisson()
#> # A tibble: 50 × 7
#>    sim_number     x     y     dx      dy     p     q
#>    <fct>      <int> <int>  <dbl>   <dbl> <dbl> <dbl>
#>  1 1              1     1 0.0786 0.00729 0.582     1
#>  2 1              2     1 0.177  0.0182  0.582     1
#>  3 1              3     1 0.276  0.0407  0.582     1
#>  4 1              4     1 0.375  0.0824  0.582     1
#>  5 1              5     2 0.474  0.150   0.873     2
#>  6 1              6     2 0.573  0.247   0.873     2
#>  7 1              7     1 0.672  0.367   0.582     1
#>  8 1              8     1 0.770  0.491   0.582     1
#>  9 1              9     2 0.869  0.594   0.873     2
#> 10 1             10     1 0.968  0.647   0.582     1
#> # ℹ 40 more rows