
Tidy Randomly Generated Bernoulli Distribution Tibble
Source:R/random-tidy-bernoulli.R
      tidy_bernoulli.RdThis function will generate n random points from a Bernoulli
distribution with a user provided, .prob, and number of random simulations
to be produced. The function returns a tibble with the simulation number
column the x column which corresponds to the n randomly generated points,
the d_, p_ and q_ data points as well.
The data is returned un-grouped.
The columns that are output are:
- sim_numberThe current simulation number.
- xThe current value of- nfor the current simulation.
- yThe randomly generated data point.
- dxThe- xvalue from the- stats::density()function.
- dyThe- yvalue from the- stats::density()function.
- pThe values from the resulting p_ function of the distribution family.
- qThe values from the resulting q_ function of the distribution family.
Details
This function uses the rbinom(), and its underlying
p, d, and q functions. The Bernoulli distribution is a special case
of the Binomial distribution with size = 1 hence this is why the binom
functions are used and set to size = 1.
See also
https://en.wikipedia.org/wiki/Bernoulli_distribution
Other Discrete Distribution:
tidy_binomial(),
tidy_geometric(),
tidy_hypergeometric(),
tidy_negative_binomial(),
tidy_poisson(),
tidy_zero_truncated_binomial(),
tidy_zero_truncated_negative_binomial(),
tidy_zero_truncated_poisson()
Other Bernoulli:
util_bernoulli_param_estimate(),
util_bernoulli_stats_tbl()
Examples
tidy_bernoulli()
#> # A tibble: 50 × 7
#>    sim_number     x     y       dx     dy     p     q
#>    <fct>      <int> <int>    <dbl>  <dbl> <dbl> <dbl>
#>  1 1              1     0 -0.296   0.0423   0.9     0
#>  2 1              2     0 -0.264   0.108    0.9     0
#>  3 1              3     0 -0.231   0.245    0.9     0
#>  4 1              4     1 -0.199   0.502    1       1
#>  5 1              5     0 -0.166   0.922    0.9     0
#>  6 1              6     0 -0.134   1.52     0.9     0
#>  7 1              7     0 -0.101   2.25     0.9     0
#>  8 1              8     0 -0.0687  2.98     0.9     0
#>  9 1              9     0 -0.0362  3.55     0.9     0
#> 10 1             10     0 -0.00372 3.79     0.9     0
#> # ℹ 40 more rows