This function will attempt to estimate the Bernoulli prob parameter
given some vector of values .x
. The function will return a list output by default,
and if the parameter .auto_gen_empirical
is set to TRUE
then the empirical
data given to the parameter .x
will be run through the tidy_empirical()
function and combined with the estimated Bernoulli data.
Arguments
- .x
The vector of data to be passed to the function. Must be non-negative integers.
- .auto_gen_empirical
This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the
tidy_empirical()
output for the.x
parameter and use thetidy_combine_distributions()
. The user can then plot out the data using$combined_data_tbl
from the function output.
Details
This function will see if the given vector .x
is a numeric vector.
It will attempt to estimate the prob parameter of a Bernoulli distribution.
See also
Other Parameter Estimation:
util_beta_param_estimate()
,
util_binomial_param_estimate()
,
util_burr_param_estimate()
,
util_cauchy_param_estimate()
,
util_chisquare_param_estimate()
,
util_exponential_param_estimate()
,
util_f_param_estimate()
,
util_gamma_param_estimate()
,
util_generalized_beta_param_estimate()
,
util_generalized_pareto_param_estimate()
,
util_geometric_param_estimate()
,
util_hypergeometric_param_estimate()
,
util_inverse_burr_param_estimate()
,
util_inverse_pareto_param_estimate()
,
util_inverse_weibull_param_estimate()
,
util_logistic_param_estimate()
,
util_lognormal_param_estimate()
,
util_negative_binomial_param_estimate()
,
util_normal_param_estimate()
,
util_paralogistic_param_estimate()
,
util_pareto1_param_estimate()
,
util_pareto_param_estimate()
,
util_poisson_param_estimate()
,
util_t_param_estimate()
,
util_triangular_param_estimate()
,
util_uniform_param_estimate()
,
util_weibull_param_estimate()
,
util_zero_truncated_binomial_param_estimate()
,
util_zero_truncated_geometric_param_estimate()
,
util_zero_truncated_negative_binomial_param_estimate()
,
util_zero_truncated_poisson_param_estimate()
Other Bernoulli:
tidy_bernoulli()
,
util_bernoulli_stats_tbl()
Examples
library(dplyr)
library(ggplot2)
tb <- tidy_bernoulli(.prob = .1) |> pull(y)
output <- util_bernoulli_param_estimate(tb)
output$parameter_tbl
#> # A tibble: 1 × 8
#> dist_type samp_size min max mean variance sum_x prob
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Bernoulli 50 0 1 0.08 0.0736 4 0.08
output$combined_data_tbl |>
tidy_combined_autoplot()