Estimate Zero Truncated Negative Binomial Parameters
Source:R/est-param-ztn-binmoial.R
util_zero_truncated_negative_binomial_param_estimate.Rd
The function will return a list output by default, and if the parameter
.auto_gen_empirical
is set to TRUE
then the empirical data given to the
parameter .x
will be run through the tidy_empirical()
function and combined
with the estimated negative binomial data.
One method of estimating the parameters is done via:
MLE via
optim
function.
Arguments
- .x
The vector of data to be passed to the function.
- .auto_gen_empirical
This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the
tidy_empirical()
output for the.x
parameter and use thetidy_combine_distributions()
. The user can then plot out the data using$combined_data_tbl
from the function output.
Details
This function will attempt to estimate the zero truncated negative binomial size and prob parameters given some vector of values.
See also
Other Parameter Estimation:
util_bernoulli_param_estimate()
,
util_beta_param_estimate()
,
util_binomial_param_estimate()
,
util_burr_param_estimate()
,
util_cauchy_param_estimate()
,
util_chisquare_param_estimate()
,
util_exponential_param_estimate()
,
util_f_param_estimate()
,
util_gamma_param_estimate()
,
util_generalized_beta_param_estimate()
,
util_generalized_pareto_param_estimate()
,
util_geometric_param_estimate()
,
util_hypergeometric_param_estimate()
,
util_inverse_burr_param_estimate()
,
util_inverse_pareto_param_estimate()
,
util_inverse_weibull_param_estimate()
,
util_logistic_param_estimate()
,
util_lognormal_param_estimate()
,
util_negative_binomial_param_estimate()
,
util_normal_param_estimate()
,
util_paralogistic_param_estimate()
,
util_pareto1_param_estimate()
,
util_pareto_param_estimate()
,
util_poisson_param_estimate()
,
util_t_param_estimate()
,
util_triangular_param_estimate()
,
util_uniform_param_estimate()
,
util_weibull_param_estimate()
,
util_zero_truncated_binomial_param_estimate()
,
util_zero_truncated_geometric_param_estimate()
,
util_zero_truncated_poisson_param_estimate()
Other Binomial:
tidy_binomial()
,
tidy_negative_binomial()
,
tidy_zero_truncated_binomial()
,
tidy_zero_truncated_negative_binomial()
,
util_binomial_param_estimate()
,
util_binomial_stats_tbl()
,
util_negative_binomial_param_estimate()
,
util_zero_truncated_binomial_param_estimate()
,
util_zero_truncated_binomial_stats_tbl()
,
util_zero_truncated_negative_binomial_stats_tbl()
Other Zero Truncated Negative Distribution:
tidy_zero_truncated_negative_binomial()
Examples
library(dplyr)
library(ggplot2)
library(actuar)
x <- as.integer(mtcars$mpg)
output <- util_zero_truncated_negative_binomial_param_estimate(x)
output$parameter_tbl
#> # A tibble: 1 × 8
#> dist_type samp_size min max mean method size prob
#> <chr> <int> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 Zero-Truncated Negative Binomi… 32 10 33 19.7 MLE_O… 26.9 0.577
output$combined_data_tbl |>
tidy_combined_autoplot()
set.seed(123)
t <- rztnbinom(100, 10, .1)
util_zero_truncated_negative_binomial_param_estimate(t)$parameter_tbl
#> # A tibble: 1 × 8
#> dist_type samp_size min max mean method size prob
#> <chr> <int> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 Zero-Truncated Negative Binomi… 100 22 183 89.6 MLE_O… 10.7 0.107