Skip to contents

This function will attempt to estimate the triangular min, mode, and max parameters given some vector of values.

The function will return a list output by default, and if the parameter .auto_gen_empirical is set to TRUE then the empirical data given to the parameter .x will be run through the tidy_empirical() function and combined with the estimated beta data.

Usage

util_triangular_param_estimate(.x, .auto_gen_empirical = TRUE)

Arguments

.x

The vector of data to be passed to the function. Must be numeric, and all values must be 0 <= x <= 1

.auto_gen_empirical

This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the tidy_empirical() output for the .x parameter and use the tidy_combine_distributions(). The user can then plot out the data using $combined_data_tbl from the function output.

Value

A tibble/list

Details

This function will attempt to estimate the triangular min, mode, and max parameters given some vector of values.

Author

Steven P. Sanderson II, MPH

Examples

library(dplyr)
library(ggplot2)

x <- mtcars$mpg
output <- util_triangular_param_estimate(x)

output$parameter_tbl
#> # A tibble: 1 × 6
#>   dist_type  samp_size   min   max  mode method
#>   <chr>          <int> <dbl> <dbl> <dbl> <chr> 
#> 1 Triangular        32  10.4  33.9  33.9 Basic 

output$combined_data_tbl |>
  tidy_combined_autoplot()


params <- tidy_triangular()$y |>
  util_triangular_param_estimate()
params$parameter_tbl
#> # A tibble: 1 × 6
#>   dist_type  samp_size    min   max  mode method
#>   <chr>          <int>  <dbl> <dbl> <dbl> <chr> 
#> 1 Triangular        50 0.0570 0.835 0.835 Basic