Skip to contents

The function will return a list output by default, and if the parameter .auto_gen_empirical is set to TRUE then the empirical data given to the parameter .x will be run through the tidy_empirical() function and combined with the estimated generalized Beta data.

Usage

util_generalized_beta_param_estimate(.x, .auto_gen_empirical = TRUE)

Arguments

.x

The vector of data to be passed to the function.

.auto_gen_empirical

This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the tidy_empirical() output for the .x parameter and use the tidy_combine_distributions(). The user can then plot out the data using $combined_data_tbl from the function output.

Value

A tibble/list

Details

This function will attempt to estimate the generalized Beta shape1, shape2, shape3, and rate parameters given some vector of values.

Author

Steven P. Sanderson II, MPH

Examples

library(dplyr)
library(ggplot2)

set.seed(123)
x <- tidy_generalized_beta(100, .shape1 = 2, .shape2 = 3,
.shape3 = 4, .rate = 5)[["y"]]
output <- util_generalized_beta_param_estimate(x)

output$parameter_tbl
#> # A tibble: 1 × 9
#>   dist_type        samp_size    min   max  mean shape1 shape2 shape3  rate
#>   <chr>                <int>  <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl> <dbl>
#> 1 Generalized Beta       100 0.0851 0.191 0.157  0.977   7.94   8.89  4.73

output$combined_data_tbl %>%
  tidy_combined_autoplot()