Tidy Randomly Generated Generalized Beta Distribution Tibble
Source:R/random-tidy-general-beta.R
tidy_generalized_beta.Rd
This function will generate n
random points from a generalized beta
distribution with a user provided, .shape1
, .shape2
, .shape3
, .rate
, and/or
.sclae
, and number of random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Usage
tidy_generalized_beta(
.n = 50,
.shape1 = 1,
.shape2 = 1,
.shape3 = 1,
.rate = 1,
.scale = 1/.rate,
.num_sims = 1,
.return_tibble = TRUE
)
Arguments
- .n
The number of randomly generated points you want.
- .shape1
A non-negative parameter of the Beta distribution.
- .shape2
A non-negative parameter of the Beta distribution.
- .shape3
A non-negative parameter of the Beta distribution.
- .rate
An alternative way to specify the
.scale
parameter.- .scale
Must be strictly positive.
- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying stats::rbeta()
, and its underlying
p
, d
, and q
functions. For more information please see stats::rbeta()
See also
https://statisticsglobe.com/beta-distribution-in-r-dbeta-pbeta-qbeta-rbeta
https://en.wikipedia.org/wiki/Beta_distribution
https://openacttexts.github.io/Loss-Data-Analytics/ChapSummaryDistributions.html
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_pareto()
,
tidy_geometric()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Beta:
tidy_beta()
,
util_beta_param_estimate()
,
util_beta_stats_tbl()
Examples
tidy_generalized_beta()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.248 -0.272 0.00334 0.248 0.248
#> 2 1 2 0.939 -0.241 0.00835 0.939 0.939
#> 3 1 3 0.852 -0.209 0.0191 0.852 0.852
#> 4 1 4 0.197 -0.178 0.0398 0.197 0.197
#> 5 1 5 0.728 -0.146 0.0757 0.728 0.728
#> 6 1 6 0.963 -0.115 0.132 0.963 0.963
#> 7 1 7 0.800 -0.0830 0.210 0.800 0.800
#> 8 1 8 0.353 -0.0515 0.306 0.353 0.353
#> 9 1 9 0.0827 -0.0199 0.410 0.0827 0.0827
#> 10 1 10 0.807 0.0116 0.506 0.807 0.807
#> # ℹ 40 more rows