Skip to contents

This function will generate n random points from an inverse gamma distribution with a user provided, .shape, .rate, .scale, and number of random simulations to be produced. The function returns a tibble with the simulation number column the x column which corresponds to the n randomly generated points, the d_, p_ and q_ data points as well.

The data is returned un-grouped.

The columns that are output are:

  • sim_number The current simulation number.

  • x The current value of n for the current simulation.

  • y The randomly generated data point.

  • dx The x value from the stats::density() function.

  • dy The y value from the stats::density() function.

  • p The values from the resulting p_ function of the distribution family.

  • q The values from the resulting q_ function of the distribution family.

Usage

tidy_inverse_gamma(
  .n = 50,
  .shape = 1,
  .rate = 1,
  .scale = 1/.rate,
  .num_sims = 1,
  .return_tibble = TRUE
)

Arguments

.n

The number of randomly generated points you want.

.shape

Must be strictly positive.

.rate

An alternative way to specify the .scale

.scale

Must be strictly positive.

.num_sims

The number of randomly generated simulations you want.

.return_tibble

A logical value indicating whether to return the result as a tibble. Default is TRUE.

Value

A tibble of randomly generated data.

Details

This function uses the underlying actuar::rinvgamma(), and its underlying p, d, and q functions. For more information please see actuar::rinvgamma()

Author

Steven P. Sanderson II, MPH

Examples

tidy_inverse_gamma()
#> # A tibble: 50 × 7
#>    sim_number     x     y     dx      dy     p     q
#>    <fct>      <int> <dbl>  <dbl>   <dbl> <dbl> <dbl>
#>  1 1              1 2.96  -1.46  0.00107 0.713 2.96 
#>  2 1              2 1.57   0.136 0.192   0.530 1.57 
#>  3 1              3 0.711  1.74  0.246   0.245 0.711
#>  4 1              4 4.81   3.34  0.0656  0.812 4.81 
#>  5 1              5 0.752  4.94  0.0417  0.264 0.752
#>  6 1              6 2.94   6.54  0.00992 0.711 2.94 
#>  7 1              7 1.68   8.14  0.0112  0.551 1.68 
#>  8 1              8 1.42   9.74  0.00364 0.495 1.42 
#>  9 1              9 0.479 11.3   0.00809 0.124 0.479
#> 10 1             10 1.15  12.9   0.00390 0.419 1.15 
#> # ℹ 40 more rows