
Tidy Randomly Generated Inverse Pareto Distribution Tibble
Source:R/random-tidy-pareto-inverse.R
tidy_inverse_pareto.RdThis function will generate n random points from an inverse
pareto distribution with a user provided, .shape, .scale, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_, p_ and q_ data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_numberThe current simulation number.xThe current value ofnfor the current simulation.yThe randomly generated data point.dxThexvalue from thestats::density()function.dyTheyvalue from thestats::density()function.pThe values from the resulting p_ function of the distribution family.qThe values from the resulting q_ function of the distribution family.
Details
This function uses the underlying actuar::rinvpareto(), and its underlying
p, d, and q functions. For more information please see actuar::rinvpareto()
See also
https://openacttexts.github.io/Loss-Data-Analytics/ChapSummaryDistributions.html
Other Continuous Distribution:
tidy_beta(),
tidy_burr(),
tidy_cauchy(),
tidy_chisquare(),
tidy_exponential(),
tidy_f(),
tidy_gamma(),
tidy_generalized_beta(),
tidy_generalized_pareto(),
tidy_inverse_burr(),
tidy_inverse_exponential(),
tidy_inverse_gamma(),
tidy_inverse_normal(),
tidy_inverse_weibull(),
tidy_logistic(),
tidy_lognormal(),
tidy_normal(),
tidy_paralogistic(),
tidy_pareto(),
tidy_pareto1(),
tidy_t(),
tidy_triangular(),
tidy_uniform(),
tidy_weibull(),
tidy_zero_truncated_geometric()
Other Pareto:
tidy_generalized_pareto(),
tidy_pareto(),
tidy_pareto1(),
util_pareto1_aic(),
util_pareto1_param_estimate(),
util_pareto1_stats_tbl(),
util_pareto_param_estimate(),
util_pareto_stats_tbl()
Other Inverse Distribution:
tidy_inverse_burr(),
tidy_inverse_exponential(),
tidy_inverse_gamma(),
tidy_inverse_normal(),
tidy_inverse_weibull()
Examples
tidy_inverse_pareto()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.206 -2.83 0.000887 0.171 0.206
#> 2 1 2 3.61 -1.75 0.0166 0.783 3.61
#> 3 1 3 0.630 -0.666 0.0953 0.387 0.630
#> 4 1 4 0.972 0.415 0.193 0.493 0.972
#> 5 1 5 1.57 1.50 0.184 0.612 1.57
#> 6 1 6 3.40 2.58 0.127 0.773 3.40
#> 7 1 7 1.96 3.66 0.0869 0.663 1.96
#> 8 1 8 3.24 4.74 0.0517 0.764 3.24
#> 9 1 9 2.56 5.82 0.0287 0.719 2.56
#> 10 1 10 3.56 6.90 0.0114 0.781 3.56
#> # ℹ 40 more rows