
Tidy Randomly Generated Exponential Distribution Tibble
Source:R/random-tidy-exponential.R
tidy_exponential.RdThis function will generate n random points from a exponential
distribution with a user provided, .rate, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_, p_ and q_ data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_numberThe current simulation number.xThe current value ofnfor the current simulation.yThe randomly generated data point.dxThexvalue from thestats::density()function.dyTheyvalue from thestats::density()function.pThe values from the resulting p_ function of the distribution family.qThe values from the resulting q_ function of the distribution family.
Details
This function uses the underlying stats::rexp(), and its underlying
p, d, and q functions. For more information please see stats::rexp()
See also
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
Other Continuous Distribution:
tidy_beta(),
tidy_burr(),
tidy_cauchy(),
tidy_chisquare(),
tidy_f(),
tidy_gamma(),
tidy_generalized_beta(),
tidy_generalized_pareto(),
tidy_inverse_burr(),
tidy_inverse_exponential(),
tidy_inverse_gamma(),
tidy_inverse_normal(),
tidy_inverse_pareto(),
tidy_inverse_weibull(),
tidy_logistic(),
tidy_lognormal(),
tidy_normal(),
tidy_paralogistic(),
tidy_pareto(),
tidy_pareto1(),
tidy_t(),
tidy_triangular(),
tidy_uniform(),
tidy_weibull(),
tidy_zero_truncated_geometric()
Other Exponential:
tidy_inverse_exponential(),
util_exponential_param_estimate(),
util_exponential_stats_tbl()
Examples
tidy_exponential()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.0209 -1.07 0.00156 0.0207 0.0209
#> 2 1 2 0.576 -0.914 0.00601 0.438 0.576
#> 3 1 3 1.13 -0.753 0.0192 0.678 1.13
#> 4 1 4 0.176 -0.593 0.0516 0.161 0.176
#> 5 1 5 1.44 -0.433 0.116 0.763 1.44
#> 6 1 6 0.165 -0.272 0.221 0.152 0.165
#> 7 1 7 0.168 -0.112 0.356 0.155 0.168
#> 8 1 8 0.136 0.0484 0.490 0.127 0.136
#> 9 1 9 0.0990 0.209 0.581 0.0943 0.0990
#> 10 1 10 0.0599 0.369 0.600 0.0582 0.0599
#> # ℹ 40 more rows