This function will generate n random points from a weibull
distribution with a user provided, .shape, .scale, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_, p_ and q_ data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_numberThe current simulation number.xThe current value ofnfor the current simulation.yThe randomly generated data point.dxThexvalue from thestats::density()function.dyTheyvalue from thestats::density()function.pThe values from the resulting p_ function of the distribution family.qThe values from the resulting q_ function of the distribution family.
Details
This function uses the underlying stats::rweibull(), and its underlying
p, d, and q functions. For more information please see stats::rweibull()
See also
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3669.htm
Other Continuous Distribution:
tidy_beta(),
tidy_burr(),
tidy_cauchy(),
tidy_chisquare(),
tidy_exponential(),
tidy_f(),
tidy_gamma(),
tidy_generalized_beta(),
tidy_generalized_pareto(),
tidy_inverse_burr(),
tidy_inverse_exponential(),
tidy_inverse_gamma(),
tidy_inverse_normal(),
tidy_inverse_pareto(),
tidy_inverse_weibull(),
tidy_logistic(),
tidy_lognormal(),
tidy_normal(),
tidy_paralogistic(),
tidy_pareto(),
tidy_pareto1(),
tidy_t(),
tidy_triangular(),
tidy_uniform(),
tidy_zero_truncated_geometric()
Other Weibull:
tidy_inverse_weibull(),
util_weibull_param_estimate(),
util_weibull_stats_tbl()
Examples
tidy_weibull()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 1.97 -0.903 0.00137 0.860 1.97
#> 2 1 2 2.25 -0.783 0.00459 0.895 2.25
#> 3 1 3 0.0354 -0.663 0.0133 0.0348 0.0354
#> 4 1 4 1.40 -0.542 0.0335 0.752 1.40
#> 5 1 5 0.248 -0.422 0.0736 0.219 0.248
#> 6 1 6 0.201 -0.301 0.141 0.182 0.201
#> 7 1 7 2.86 -0.181 0.238 0.943 2.86
#> 8 1 8 0.126 -0.0607 0.356 0.118 0.126
#> 9 1 9 0.901 0.0597 0.475 0.594 0.901
#> 10 1 10 3.76 0.180 0.574 0.977 3.76
#> # ℹ 40 more rows
