Skip to contents

This function will generate n random points from an inverse exponential distribution with a user provided, .rate or .scale and number of random simulations to be produced. The function returns a tibble with the simulation number column the x column which corresponds to the n randomly generated points, the d_, p_ and q_ data points as well.

The data is returned un-grouped.

The columns that are output are:

  • sim_number The current simulation number.

  • x The current value of n for the current simulation.

  • y The randomly generated data point.

  • dx The x value from the stats::density() function.

  • dy The y value from the stats::density() function.

  • p The values from the resulting p_ function of the distribution family.

  • q The values from the resulting q_ function of the distribution family.

Usage

tidy_inverse_exponential(
  .n = 50,
  .rate = 1,
  .scale = 1/.rate,
  .num_sims = 1,
  .return_tibble = TRUE
)

Arguments

.n

The number of randomly generated points you want.

.rate

An alternative way to specify the .scale

.scale

Must be strictly positive.

.num_sims

The number of randomly generated simulations you want.

.return_tibble

A logical value indicating whether to return the result as a tibble. Default is TRUE.

Value

A tibble of randomly generated data.

Details

This function uses the underlying actuar::rinvexp(), and its underlying p, d, and q functions. For more information please see actuar::rinvexp()

Author

Steven P. Sanderson II, MPH

Examples

tidy_inverse_exponential()
#> # A tibble: 50 × 7
#>    sim_number     x     y     dx       dy      p     q
#>    <fct>      <int> <dbl>  <dbl>    <dbl>  <dbl> <dbl>
#>  1 1              1 0.859 -2.61  6.92e- 4 0.312  0.859
#>  2 1              2 0.700 -0.676 7.79e- 2 0.240  0.700
#>  3 1              3 0.573  1.26  2.28e- 1 0.175  0.573
#>  4 1              4 0.320  3.20  8.58e- 2 0.0438 0.320
#>  5 1              5 1.71   5.14  3.45e- 2 0.557  1.71 
#>  6 1              6 5.49   7.08  3.59e- 2 0.833  5.49 
#>  7 1              7 2.40   9.02  2.02e- 2 0.659  2.40 
#>  8 1              8 2.68  11.0   1.14e- 3 0.688  2.68 
#>  9 1              9 0.574 12.9   1.53e- 6 0.175  0.574
#> 10 1             10 2.97  14.8   4.16e-11 0.714  2.97 
#> # ℹ 40 more rows