This function will generate n random points from a beta
distribution with a user provided, .shape1, .shape2, .ncp or non-centrality parameter,
and number of random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_, p_ and q_ data points as well.
The data is returned un-grouped.
The columns that are output are:
- sim_numberThe current simulation number.
- xThe current value of- nfor the current simulation.
- yThe randomly generated data point.
- dxThe- xvalue from the- stats::density()function.
- dyThe- yvalue from the- stats::density()function.
- pThe values from the resulting p_ function of the distribution family.
- qThe values from the resulting q_ function of the distribution family.
Usage
tidy_beta(
  .n = 50,
  .shape1 = 1,
  .shape2 = 1,
  .ncp = 0,
  .num_sims = 1,
  .return_tibble = TRUE
)Arguments
- .n
- The number of randomly generated points you want. 
- .shape1
- A non-negative parameter of the Beta distribution. 
- .shape2
- A non-negative parameter of the Beta distribution. 
- .ncp
- The - non-centrality parameterof the Beta distribution.
- .num_sims
- The number of randomly generated simulations you want. 
- .return_tibble
- A logical value indicating whether to return the result as a tibble. Default is TRUE. 
Details
This function uses the underlying stats::rbeta(), and its underlying
p, d, and q functions. For more information please see stats::rbeta()
See also
https://statisticsglobe.com/beta-distribution-in-r-dbeta-pbeta-qbeta-rbeta
https://en.wikipedia.org/wiki/Beta_distribution
Other Continuous Distribution:
tidy_burr(),
tidy_cauchy(),
tidy_chisquare(),
tidy_exponential(),
tidy_f(),
tidy_gamma(),
tidy_generalized_beta(),
tidy_generalized_pareto(),
tidy_inverse_burr(),
tidy_inverse_exponential(),
tidy_inverse_gamma(),
tidy_inverse_normal(),
tidy_inverse_pareto(),
tidy_inverse_weibull(),
tidy_logistic(),
tidy_lognormal(),
tidy_normal(),
tidy_paralogistic(),
tidy_pareto(),
tidy_pareto1(),
tidy_t(),
tidy_triangular(),
tidy_uniform(),
tidy_weibull(),
tidy_zero_truncated_geometric()
Other Beta:
tidy_generalized_beta(),
util_beta_param_estimate(),
util_beta_stats_tbl()
Examples
tidy_beta()
#> # A tibble: 50 × 7
#>    sim_number     x     y      dx      dy     p     q
#>    <fct>      <int> <dbl>   <dbl>   <dbl> <dbl> <dbl>
#>  1 1              1 0.419 -0.377  0.00316 0.419 0.419
#>  2 1              2 0.229 -0.341  0.00749 0.229 0.229
#>  3 1              3 0.710 -0.305  0.0165  0.710 0.710
#>  4 1              4 0.737 -0.270  0.0336  0.737 0.737
#>  5 1              5 0.497 -0.234  0.0635  0.497 0.497
#>  6 1              6 0.995 -0.198  0.112   0.995 0.995
#>  7 1              7 0.252 -0.162  0.182   0.252 0.252
#>  8 1              8 0.336 -0.127  0.276   0.336 0.336
#>  9 1              9 0.451 -0.0911 0.392   0.451 0.451
#> 10 1             10 0.497 -0.0553 0.519   0.497 0.497
#> # ℹ 40 more rows
