This function will generate n
random points from a beta
distribution with a user provided, .shape1
, .shape2
, .ncp
or non-centrality parameter
,
and number of random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Usage
tidy_beta(
.n = 50,
.shape1 = 1,
.shape2 = 1,
.ncp = 0,
.num_sims = 1,
.return_tibble = TRUE
)
Arguments
- .n
The number of randomly generated points you want.
- .shape1
A non-negative parameter of the Beta distribution.
- .shape2
A non-negative parameter of the Beta distribution.
- .ncp
The
non-centrality parameter
of the Beta distribution.- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying stats::rbeta()
, and its underlying
p
, d
, and q
functions. For more information please see stats::rbeta()
See also
https://statisticsglobe.com/beta-distribution-in-r-dbeta-pbeta-qbeta-rbeta
https://en.wikipedia.org/wiki/Beta_distribution
Other Continuous Distribution:
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_geometric()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Beta:
tidy_generalized_beta()
,
util_beta_param_estimate()
,
util_beta_stats_tbl()
Examples
tidy_beta()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.359 -0.353 0.00273 0.359 0.359
#> 2 1 2 0.988 -0.318 0.00644 0.988 0.988
#> 3 1 3 0.295 -0.283 0.0141 0.295 0.295
#> 4 1 4 0.724 -0.248 0.0284 0.724 0.724
#> 5 1 5 0.729 -0.213 0.0532 0.729 0.729
#> 6 1 6 0.301 -0.178 0.0925 0.301 0.301
#> 7 1 7 0.423 -0.143 0.149 0.423 0.423
#> 8 1 8 1.00 -0.107 0.224 1.00 1.00
#> 9 1 9 0.816 -0.0724 0.315 0.816 0.816
#> 10 1 10 0.784 -0.0373 0.416 0.784 0.784
#> # ℹ 40 more rows