This function will generate n random points from a beta
distribution with a user provided, .shape1, .shape2, .ncp or non-centrality parameter,
and number of random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_, p_ and q_ data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_numberThe current simulation number.xThe current value ofnfor the current simulation.yThe randomly generated data point.dxThexvalue from thestats::density()function.dyTheyvalue from thestats::density()function.pThe values from the resulting p_ function of the distribution family.qThe values from the resulting q_ function of the distribution family.
Usage
tidy_beta(
.n = 50,
.shape1 = 1,
.shape2 = 1,
.ncp = 0,
.num_sims = 1,
.return_tibble = TRUE
)Arguments
- .n
The number of randomly generated points you want.
- .shape1
A non-negative parameter of the Beta distribution.
- .shape2
A non-negative parameter of the Beta distribution.
- .ncp
The
non-centrality parameterof the Beta distribution.- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying stats::rbeta(), and its underlying
p, d, and q functions. For more information please see stats::rbeta()
See also
https://statisticsglobe.com/beta-distribution-in-r-dbeta-pbeta-qbeta-rbeta
https://en.wikipedia.org/wiki/Beta_distribution
Other Continuous Distribution:
tidy_burr(),
tidy_cauchy(),
tidy_chisquare(),
tidy_exponential(),
tidy_f(),
tidy_gamma(),
tidy_generalized_beta(),
tidy_generalized_pareto(),
tidy_inverse_burr(),
tidy_inverse_exponential(),
tidy_inverse_gamma(),
tidy_inverse_normal(),
tidy_inverse_pareto(),
tidy_inverse_weibull(),
tidy_logistic(),
tidy_lognormal(),
tidy_normal(),
tidy_paralogistic(),
tidy_pareto(),
tidy_pareto1(),
tidy_t(),
tidy_triangular(),
tidy_uniform(),
tidy_weibull(),
tidy_zero_truncated_geometric()
Other Beta:
tidy_generalized_beta(),
util_beta_param_estimate(),
util_beta_stats_tbl()
Examples
tidy_beta()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.419 -0.377 0.00316 0.419 0.419
#> 2 1 2 0.229 -0.341 0.00749 0.229 0.229
#> 3 1 3 0.710 -0.305 0.0165 0.710 0.710
#> 4 1 4 0.737 -0.270 0.0336 0.737 0.737
#> 5 1 5 0.497 -0.234 0.0635 0.497 0.497
#> 6 1 6 0.995 -0.198 0.112 0.995 0.995
#> 7 1 7 0.252 -0.162 0.182 0.252 0.252
#> 8 1 8 0.336 -0.127 0.276 0.336 0.336
#> 9 1 9 0.451 -0.0911 0.392 0.451 0.451
#> 10 1 10 0.497 -0.0553 0.519 0.497 0.497
#> # ℹ 40 more rows
