This function will generate n random points from a cauchy
distribution with a user provided, .location, .scale, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_, p_ and q_ data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_numberThe current simulation number.xThe current value ofnfor the current simulation.yThe randomly generated data point.dxThexvalue from thestats::density()function.dyTheyvalue from thestats::density()function.pThe values from the resulting p_ function of the distribution family.qThe values from the resulting q_ function of the distribution family.
Arguments
- .n
The number of randomly generated points you want.
- .location
The location parameter.
- .scale
The scale parameter, must be greater than or equal to 0.
- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying stats::rcauchy(), and its underlying
p, d, and q functions. For more information please see stats::rcauchy()
See also
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
Other Continuous Distribution:
tidy_beta(),
tidy_burr(),
tidy_chisquare(),
tidy_exponential(),
tidy_f(),
tidy_gamma(),
tidy_generalized_beta(),
tidy_generalized_pareto(),
tidy_inverse_burr(),
tidy_inverse_exponential(),
tidy_inverse_gamma(),
tidy_inverse_normal(),
tidy_inverse_pareto(),
tidy_inverse_weibull(),
tidy_logistic(),
tidy_lognormal(),
tidy_normal(),
tidy_paralogistic(),
tidy_pareto(),
tidy_pareto1(),
tidy_t(),
tidy_triangular(),
tidy_uniform(),
tidy_weibull(),
tidy_zero_truncated_geometric()
Other Cauchy:
util_cauchy_param_estimate(),
util_cauchy_stats_tbl()
Examples
tidy_cauchy()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 4.59 -16.7 0.000205 0.932 4.59
#> 2 1 2 -0.173 -14.7 0.0183 0.446 -0.173
#> 3 1 3 83.2 -12.6 0.000240 0.996 83.2
#> 4 1 4 -14.1 -10.5 0.0151 0.0225 -14.1
#> 5 1 5 -3.24 -8.46 0.000802 0.0953 -3.24
#> 6 1 6 0.110 -6.39 0.0188 0.535 0.110
#> 7 1 7 -6.65 -4.32 0.00818 0.0475 -6.65
#> 8 1 8 0.199 -2.25 0.0447 0.563 0.199
#> 9 1 9 0.0877 -0.178 0.294 0.528 0.0877
#> 10 1 10 0.626 1.89 0.0671 0.678 0.626
#> # ℹ 40 more rows
