This function will generate n
random points from a Gaussian
distribution with a user provided, .mean
, .sd
- standard deviation and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the dnorm
, pnorm
and qnorm
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Arguments
- .n
The number of randomly generated points you want.
- .mean
The mean of the randomly generated data.
- .sd
The standard deviation of the randomly generated data.
- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying stats::rnorm()
, stats::pnorm()
,
and stats::qnorm()
functions to generate data from the given parameters. For
more information please see stats::rnorm()
See also
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Gaussian:
tidy_inverse_normal()
,
util_normal_param_estimate()
,
util_normal_stats_tbl()
Examples
tidy_normal()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.170 -2.77 0.000542 0.567 0.170
#> 2 1 2 -1.56 -2.65 0.00131 0.0593 -1.56
#> 3 1 3 0.931 -2.53 0.00294 0.824 0.931
#> 4 1 4 -0.793 -2.41 0.00607 0.214 -0.793
#> 5 1 5 -1.07 -2.29 0.0116 0.141 -1.07
#> 6 1 6 0.750 -2.18 0.0208 0.773 0.750
#> 7 1 7 0.941 -2.06 0.0345 0.827 0.941
#> 8 1 8 -0.315 -1.94 0.0534 0.376 -0.315
#> 9 1 9 -0.555 -1.82 0.0777 0.290 -0.555
#> 10 1 10 -0.129 -1.70 0.106 0.449 -0.129
#> # ℹ 40 more rows