Skip to contents

The function will return a list output by default, and if the parameter .auto_gen_empirical is set to TRUE then the empirical data given to the parameter .x will be run through the tidy_empirical() function and combined with the estimated normal data.

Three different methods of shape parameters are supplied:

  • MLE/MME

  • MVUE

Usage

util_normal_param_estimate(.x, .auto_gen_empirical = TRUE)

Arguments

.x

The vector of data to be passed to the function.

.auto_gen_empirical

This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the tidy_empirical() output for the .x parameter and use the tidy_combine_distributions(). The user can then plot out the data using $combined_data_tbl from the function output.

Value

A tibble/list

Details

This function will attempt to estimate the normal gaussian mean and standard deviation parameters given some vector of values.

Author

Steven P. Sanderson II, MPH

Examples

library(dplyr)
library(ggplot2)

x <- mtcars$mpg
output <- util_normal_param_estimate(x)

output$parameter_tbl
#> # A tibble: 2 × 8
#>   dist_type samp_size   min   max method              mu stan_dev shape_ratio
#>   <chr>         <int> <dbl> <dbl> <chr>            <dbl>    <dbl>       <dbl>
#> 1 Gaussian         32  10.4  33.9 EnvStats_MME_MLE  20.1     5.93        3.39
#> 2 Gaussian         32  10.4  33.9 EnvStats_MVUE     20.1     6.03        3.33

output$combined_data_tbl |>
  tidy_combined_autoplot()


t <- rnorm(50, 0, 1)
util_normal_param_estimate(t)$parameter_tbl
#> # A tibble: 2 × 8
#>   dist_type samp_size   min   max method                mu stan_dev shape_ratio
#>   <chr>         <int> <dbl> <dbl> <chr>              <dbl>    <dbl>       <dbl>
#> 1 Gaussian         50 -2.05  2.19 EnvStats_MME_MLE -0.0937    0.952     -0.0984
#> 2 Gaussian         50 -2.05  2.19 EnvStats_MVUE    -0.0937    0.962     -0.0974