Estimate Zero-Truncated Geometric Parameters
Source:R/est-param-zt-geometric.R
util_zero_truncated_geometric_param_estimate.Rd
This function will estimate the prob
parameter for a
Zero-Truncated Geometric distribution from a given vector .x
. The function
returns a list with a parameter table, and if .auto_gen_empirical
is set
to TRUE
, the empirical data is combined with the estimated distribution
data.
Arguments
- .x
The vector of data to be passed to the function. Must contain non-negative integers and should have no zeros.
- .auto_gen_empirical
Boolean value (default
TRUE
) that, when set toTRUE
, will generatetidy_empirical()
output for.x
and combine it with the estimated distribution data.
Details
This function will attempt to estimate the prob
parameter of the
Zero-Truncated Geometric distribution using given vector .x
as input data.
If the parameter .auto_gen_empirical
is set to TRUE
, the empirical data
in .x
will be run through the tidy_empirical()
function and combined with
the estimated zero-truncated geometric data.
See also
Other Parameter Estimation:
util_bernoulli_param_estimate()
,
util_beta_param_estimate()
,
util_binomial_param_estimate()
,
util_burr_param_estimate()
,
util_cauchy_param_estimate()
,
util_chisquare_param_estimate()
,
util_exponential_param_estimate()
,
util_f_param_estimate()
,
util_gamma_param_estimate()
,
util_generalized_beta_param_estimate()
,
util_generalized_pareto_param_estimate()
,
util_geometric_param_estimate()
,
util_hypergeometric_param_estimate()
,
util_inverse_burr_param_estimate()
,
util_inverse_pareto_param_estimate()
,
util_inverse_weibull_param_estimate()
,
util_logistic_param_estimate()
,
util_lognormal_param_estimate()
,
util_negative_binomial_param_estimate()
,
util_normal_param_estimate()
,
util_paralogistic_param_estimate()
,
util_pareto1_param_estimate()
,
util_pareto_param_estimate()
,
util_poisson_param_estimate()
,
util_t_param_estimate()
,
util_triangular_param_estimate()
,
util_uniform_param_estimate()
,
util_weibull_param_estimate()
,
util_zero_truncated_binomial_param_estimate()
,
util_zero_truncated_negative_binomial_param_estimate()
,
util_zero_truncated_poisson_param_estimate()
Other Zero-Truncated Geometric:
util_zero_truncated_geometric_stats_tbl()
Examples
library(actuar)
library(dplyr)
library(ggplot2)
library(actuar)
set.seed(123)
ztg <- rztgeom(100, prob = 0.2)
output <- util_zero_truncated_geometric_param_estimate(ztg)
output$parameter_tbl
#> # A tibble: 1 × 9
#> dist_type samp_size min max mean variance sum_x method prob
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 Zero-Truncated Geomet… 100 1 16 4.78 13.5 478 Momen… 0.209
output$combined_data_tbl |>
tidy_combined_autoplot()