Skip to contents

The function will return a list output by default, and if the parameter .auto_gen_empirical is set to TRUE then the empirical data given to the parameter .x will be run through the tidy_empirical() function and combined with the estimated pareto data.

Two different methods of shape parameters are supplied:

  • LSE

  • MLE

Usage

util_pareto_param_estimate(.x, .auto_gen_empirical = TRUE)

Arguments

.x

The vector of data to be passed to the function.

.auto_gen_empirical

This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the tidy_empirical() output for the .x parameter and use the tidy_combine_distributions(). The user can then plot out the data using $combined_data_tbl from the function output.

Value

A tibble/list

Details

This function will attempt to estimate the pareto shape and scale parameters given some vector of values.

Author

Steven P. Sanderson II, MPH

Examples

library(dplyr)
library(ggplot2)

x <- mtcars$mpg
output <- util_pareto_param_estimate(x)

output$parameter_tbl
#> # A tibble: 2 × 8
#>   dist_type samp_size   min   max method shape scale shape_ratio
#>   <chr>         <int> <dbl> <dbl> <chr>  <dbl> <dbl>       <dbl>
#> 1 Pareto           32  10.4  33.9 LSE     13.7  2.86        4.79
#> 2 Pareto           32  10.4  33.9 MLE     10.4  1.62        6.40

output$combined_data_tbl |>
  tidy_combined_autoplot()


t <- tidy_pareto(50, 1, 1) |> pull(y)
util_pareto_param_estimate(t)$parameter_tbl
#> # A tibble: 2 × 8
#>   dist_type samp_size    min   max method  shape scale shape_ratio
#>   <chr>         <int>  <dbl> <dbl> <chr>   <dbl> <dbl>       <dbl>
#> 1 Pareto           50 0.0206  94.5 LSE    0.225  0.633      0.355 
#> 2 Pareto           50 0.0206  94.5 MLE    0.0206 0.254      0.0812