Skip to contents

The function will return a list output by default, and if the parameter .auto_gen_empirical is set to TRUE then the empirical data given to the parameter .x will be run through the tidy_empirical() function and combined with the estimated negative binomial data.

Three different methods of shape parameters are supplied:

  • MLE/MME

  • MMUE

  • MLE via optim function.

Usage

util_negative_binomial_param_estimate(
  .x,
  .size = 1,
  .auto_gen_empirical = TRUE
)

Arguments

.x

The vector of data to be passed to the function.

.size

The size parameter, the default is 1.

.auto_gen_empirical

This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the tidy_empirical() output for the .x parameter and use the tidy_combine_distributions(). The user can then plot out the data using $combined_data_tbl from the function output.

Value

A tibble/list

Details

This function will attempt to estimate the negative binomial size and prob parameters given some vector of values.

See also

Author

Steven P. Sanderson II, MPH

Examples

library(dplyr)
library(ggplot2)

x <- as.integer(mtcars$mpg)
output <- util_negative_binomial_param_estimate(x, .size = 1)

output$parameter_tbl
#> # A tibble: 3 × 9
#>   dist_type         samp_size   min   max  mean method   size   prob shape_ratio
#>   <chr>                 <int> <dbl> <dbl> <dbl> <chr>   <dbl>  <dbl>       <dbl>
#> 1 Negative Binomial        32    10    33  19.7 EnvSta…  32   0.0483       662  
#> 2 Negative Binomial        32    10    33  19.7 EnvSta…  32   0.0469       682. 
#> 3 Negative Binomial        32    10    33  19.7 MLE_Op…  26.9 0.577         46.5

output$combined_data_tbl |>
  tidy_combined_autoplot()


t <- rnbinom(50, 1, .1)
util_negative_binomial_param_estimate(t, .size = 1)$parameter_tbl
#> # A tibble: 3 × 9
#>   dist_type         samp_size   min   max  mean method   size   prob shape_ratio
#>   <chr>                 <int> <dbl> <dbl> <dbl> <chr>   <dbl>  <dbl>       <dbl>
#> 1 Negative Binomial        50     0    48  9.36 EnvSt… 50     0.0965       518  
#> 2 Negative Binomial        50     0    48  9.36 EnvSt… 50     0.0948       528. 
#> 3 Negative Binomial        50     0    48  9.36 MLE_O…  0.901 0.0878        10.3