This function will automatically scale the data from 0 to 1 if
it is not already. This means you can pass a vector like mtcars$mpg
and not
worry about it.
The function will return a list output by default, and if the parameter
.auto_gen_empirical
is set to TRUE
then the empirical data given to the
parameter .x
will be run through the tidy_empirical()
function and combined
with the estimated beta data.
Three different methods of shape parameters are supplied:
Bayes
NIST mme
EnvStats mme, see
EnvStats::ebeta()
Arguments
- .x
The vector of data to be passed to the function. Must be numeric, and all values must be 0 <= x <= 1
- .auto_gen_empirical
This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the
tidy_empirical()
output for the.x
parameter and use thetidy_combine_distributions()
. The user can then plot out the data using$combined_data_tbl
from the function output.
Details
This function will attempt to estimate the beta shape1 and shape2 parameters given some vector of values.
See also
Other Parameter Estimation:
util_bernoulli_param_estimate()
,
util_binomial_param_estimate()
,
util_burr_param_estimate()
,
util_cauchy_param_estimate()
,
util_chisquare_param_estimate()
,
util_exponential_param_estimate()
,
util_f_param_estimate()
,
util_gamma_param_estimate()
,
util_generalized_beta_param_estimate()
,
util_generalized_pareto_param_estimate()
,
util_geometric_param_estimate()
,
util_hypergeometric_param_estimate()
,
util_inverse_burr_param_estimate()
,
util_inverse_pareto_param_estimate()
,
util_inverse_weibull_param_estimate()
,
util_logistic_param_estimate()
,
util_lognormal_param_estimate()
,
util_negative_binomial_param_estimate()
,
util_normal_param_estimate()
,
util_paralogistic_param_estimate()
,
util_pareto1_param_estimate()
,
util_pareto_param_estimate()
,
util_poisson_param_estimate()
,
util_t_param_estimate()
,
util_triangular_param_estimate()
,
util_uniform_param_estimate()
,
util_weibull_param_estimate()
,
util_zero_truncated_binomial_param_estimate()
,
util_zero_truncated_geometric_param_estimate()
,
util_zero_truncated_negative_binomial_param_estimate()
,
util_zero_truncated_poisson_param_estimate()
Other Beta:
tidy_beta()
,
tidy_generalized_beta()
,
util_beta_stats_tbl()
Examples
library(dplyr)
library(ggplot2)
x <- mtcars$mpg
output <- util_beta_param_estimate(x)
#> For the beta distribution, its mean 'mu' should be 0 < mu < 1. The data will
#> therefore be scaled to enforce this.
output$parameter_tbl
#> # A tibble: 3 × 10
#> dist_type samp_size min max mean variance method shape1 shape2
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 Beta 32 10.4 33.9 0.412 0.0658 Bayes 13.2 18.8
#> 2 Beta 32 10.4 33.9 0.412 0.0658 NIST_MME 1.11 1.58
#> 3 Beta 32 10.4 33.9 0.412 0.0658 EnvStats_MME 1.16 1.65
#> # ℹ 1 more variable: shape_ratio <dbl>
output$combined_data_tbl |>
tidy_combined_autoplot()
tb <- rbeta(50, 2.5, 1.4)
util_beta_param_estimate(tb)$parameter_tbl
#> There was no need to scale the data.
#> # A tibble: 3 × 10
#> dist_type samp_size min max mean variance method shape1 shape2
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 Beta 50 0.119 0.999 0.624 0.0584 Bayes 31.2 18.8
#> 2 Beta 50 0.119 0.999 0.624 0.0584 NIST_MME 1.88 1.14
#> 3 Beta 50 0.119 0.999 0.624 0.0584 EnvStats_MME 1.93 1.17
#> # ℹ 1 more variable: shape_ratio <dbl>