Skip to contents

The function will return a list output by default, and if the parameter .auto_gen_empirical is set to TRUE then the empirical data given to the parameter .x will be run through the tidy_empirical() function and combined with the estimated lognormal data.

Three different methods of shape parameters are supplied:

Usage

util_lognormal_param_estimate(.x, .auto_gen_empirical = TRUE)

Arguments

.x

The vector of data to be passed to the function.

.auto_gen_empirical

This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the tidy_empirical() output for the .x parameter and use the tidy_combine_distributions(). The user can then plot out the data using $combined_data_tbl from the function output.

Value

A tibble/list

Details

This function will attempt to estimate the lognormal meanlog and log sd parameters given some vector of values.

Author

Steven P. Sanderson II, MPH

Examples

library(dplyr)
library(ggplot2)

x <- mtcars$mpg
output <- util_lognormal_param_estimate(x)

output$parameter_tbl
#> # A tibble: 2 × 8
#>   dist_type samp_size   min   max method        mean_log sd_log shape_ratio
#>   <chr>         <int> <dbl> <dbl> <chr>            <dbl>  <dbl>       <dbl>
#> 1 Lognormal        32  10.4  33.9 EnvStats_MVUE     2.96  0.298        9.93
#> 2 Lognormal        32  10.4  33.9 EnvStats_MME      2.96  0.293       10.1 

output$combined_data_tbl |>
  tidy_combined_autoplot()


tb <- tidy_lognormal(.meanlog = 2, .sdlog = 1) |> pull(y)
util_lognormal_param_estimate(tb)$parameter_tbl
#> # A tibble: 2 × 8
#>   dist_type samp_size   min   max method        mean_log sd_log shape_ratio
#>   <chr>         <int> <dbl> <dbl> <chr>            <dbl>  <dbl>       <dbl>
#> 1 Lognormal        50 0.948  189. EnvStats_MVUE     1.97   1.11        1.78
#> 2 Lognormal        50 0.948  189. EnvStats_MME      1.97   1.10        1.80