Skip to contents

The function will return a list output by default, and if the parameter .auto_gen_empirical is set to TRUE then the empirical data given to the parameter .x will be run through the tidy_empirical() function and combined with the estimated logistic data.

Three different methods of shape parameters are supplied:

  • MLE

  • MME

  • MMUE

Usage

util_logistic_param_estimate(.x, .auto_gen_empirical = TRUE)

Arguments

.x

The vector of data to be passed to the function.

.auto_gen_empirical

This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the tidy_empirical() output for the .x parameter and use the tidy_combine_distributions(). The user can then plot out the data using $combined_data_tbl from the function output.

Value

A tibble/list

Details

This function will attempt to estimate the logistic location and scale parameters given some vector of values.

Author

Steven P. Sanderson II, MPH

Examples

library(dplyr)
library(ggplot2)

x <- mtcars$mpg
output <- util_logistic_param_estimate(x)

output$parameter_tbl
#> # A tibble: 3 × 10
#>   dist_type samp_size   min   max  mean basic_scale method        location scale
#>   <chr>         <int> <dbl> <dbl> <dbl>       <dbl> <chr>            <dbl> <dbl>
#> 1 Logistic         32  10.4  33.9  20.1        3.27 EnvStats_MME      20.1  3.27
#> 2 Logistic         32  10.4  33.9  20.1        3.27 EnvStats_MMUE     20.1  3.32
#> 3 Logistic         32  10.4  33.9  20.1        3.27 EnvStats_MLE      20.1 12.6 
#> # ℹ 1 more variable: shape_ratio <dbl>

output$combined_data_tbl |>
  tidy_combined_autoplot()


t <- rlogis(50, 2.5, 1.4)
util_logistic_param_estimate(t)$parameter_tbl
#> # A tibble: 3 × 10
#>   dist_type samp_size   min   max  mean basic_scale method        location scale
#>   <chr>         <int> <dbl> <dbl> <dbl>       <dbl> <chr>            <dbl> <dbl>
#> 1 Logistic         50 -1.33  8.29  2.87        1.23 EnvStats_MME      2.87  1.23
#> 2 Logistic         50 -1.33  8.29  2.87        1.23 EnvStats_MMUE     2.87  1.24
#> 3 Logistic         50 -1.33  8.29  2.87        1.23 EnvStats_MLE      2.87  1.63
#> # ℹ 1 more variable: shape_ratio <dbl>