The function will return a list output by default, and if the parameter
.auto_gen_empirical
is set to TRUE
then the empirical data given to the
parameter .x
will be run through the tidy_empirical()
function and combined
with the estimated Pareto data.
Two different methods of shape parameters are supplied:
LSE
MLE
Arguments
- .x
The vector of data to be passed to the function.
- .auto_gen_empirical
This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the
tidy_empirical()
output for the.x
parameter and use thetidy_combine_distributions()
. The user can then plot out the data using$combined_data_tbl
from the function output.
Details
This function will attempt to estimate the Pareto shape and scale parameters given some vector of values.
See also
Other Parameter Estimation:
util_bernoulli_param_estimate()
,
util_beta_param_estimate()
,
util_binomial_param_estimate()
,
util_burr_param_estimate()
,
util_cauchy_param_estimate()
,
util_chisquare_param_estimate()
,
util_exponential_param_estimate()
,
util_f_param_estimate()
,
util_gamma_param_estimate()
,
util_generalized_beta_param_estimate()
,
util_generalized_pareto_param_estimate()
,
util_geometric_param_estimate()
,
util_hypergeometric_param_estimate()
,
util_inverse_burr_param_estimate()
,
util_inverse_pareto_param_estimate()
,
util_inverse_weibull_param_estimate()
,
util_logistic_param_estimate()
,
util_lognormal_param_estimate()
,
util_negative_binomial_param_estimate()
,
util_normal_param_estimate()
,
util_paralogistic_param_estimate()
,
util_pareto_param_estimate()
,
util_poisson_param_estimate()
,
util_t_param_estimate()
,
util_triangular_param_estimate()
,
util_uniform_param_estimate()
,
util_weibull_param_estimate()
,
util_zero_truncated_binomial_param_estimate()
,
util_zero_truncated_geometric_param_estimate()
,
util_zero_truncated_negative_binomial_param_estimate()
,
util_zero_truncated_poisson_param_estimate()
Other Pareto:
tidy_generalized_pareto()
,
tidy_inverse_pareto()
,
tidy_pareto()
,
tidy_pareto1()
,
util_pareto1_aic()
,
util_pareto1_stats_tbl()
,
util_pareto_param_estimate()
,
util_pareto_stats_tbl()
Examples
library(dplyr)
library(ggplot2)
x <- mtcars[["mpg"]]
output <- util_pareto1_param_estimate(x)
output$parameter_tbl
#> # A tibble: 2 × 7
#> dist_type samp_size min max method est_shape est_min
#> <chr> <int> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 Pareto 32 10.4 33.9 LSE 2.86 13.7
#> 2 Pareto 32 10.4 33.9 MLE 1.62 10.4
output$combined_data_tbl |>
tidy_combined_autoplot()
set.seed(123)
t <- tidy_pareto1(.n = 100, .shape = 1.5, .min = 1)[["y"]]
util_pareto1_param_estimate(t)$parameter_tbl
#> # A tibble: 2 × 7
#> dist_type samp_size min max method est_shape est_min
#> <chr> <int> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 Pareto 100 1.00 137. LSE 1.36 0.936
#> 2 Pareto 100 1.00 137. MLE 1.52 1.00