This function will check to see if some given vector .x
is
either a numeric vector or a factor vector with at least two levels then it
will cause an error and the function will abort. The function will return a
list output by default, and if the parameter .auto_gen_empirical
is set to
TRUE
then the empirical data given to the parameter .x
will be run through
the tidy_empirical()
function and combined with the estimated binomial data.
Arguments
- .x
The vector of data to be passed to the function. Must be numeric, and all values must be 0 <= x <= 1
- .size
Number of trials, zero or more.
- .auto_gen_empirical
This is a boolean value of TRUE/FALSE with default set to TRUE. This will automatically create the
tidy_empirical()
output for the.x
parameter and use thetidy_combine_distributions()
. The user can then plot out the data using$combined_data_tbl
from the function output.
Details
This function will attempt to estimate the binomial p_hat and size parameters given some vector of values.
See also
Other Parameter Estimation:
util_bernoulli_param_estimate()
,
util_beta_param_estimate()
,
util_burr_param_estimate()
,
util_cauchy_param_estimate()
,
util_chisquare_param_estimate()
,
util_exponential_param_estimate()
,
util_f_param_estimate()
,
util_gamma_param_estimate()
,
util_generalized_beta_param_estimate()
,
util_generalized_pareto_param_estimate()
,
util_geometric_param_estimate()
,
util_hypergeometric_param_estimate()
,
util_inverse_burr_param_estimate()
,
util_inverse_pareto_param_estimate()
,
util_inverse_weibull_param_estimate()
,
util_logistic_param_estimate()
,
util_lognormal_param_estimate()
,
util_negative_binomial_param_estimate()
,
util_normal_param_estimate()
,
util_paralogistic_param_estimate()
,
util_pareto1_param_estimate()
,
util_pareto_param_estimate()
,
util_poisson_param_estimate()
,
util_t_param_estimate()
,
util_triangular_param_estimate()
,
util_uniform_param_estimate()
,
util_weibull_param_estimate()
,
util_zero_truncated_binomial_param_estimate()
,
util_zero_truncated_geometric_param_estimate()
,
util_zero_truncated_negative_binomial_param_estimate()
,
util_zero_truncated_poisson_param_estimate()
Other Binomial:
tidy_binomial()
,
tidy_negative_binomial()
,
tidy_zero_truncated_binomial()
,
tidy_zero_truncated_negative_binomial()
,
util_binomial_stats_tbl()
,
util_negative_binomial_param_estimate()
,
util_zero_truncated_binomial_param_estimate()
,
util_zero_truncated_binomial_stats_tbl()
,
util_zero_truncated_negative_binomial_param_estimate()
,
util_zero_truncated_negative_binomial_stats_tbl()
Examples
library(dplyr)
library(ggplot2)
tb <- rbinom(50, 1, .1)
output <- util_binomial_param_estimate(tb)
output$parameter_tbl
#> # A tibble: 1 × 10
#> dist_type samp_size min max mean variance method prob size shape_ratio
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <int> <dbl>
#> 1 Binomial 50 0 1 0.04 0.0392 EnvSta… 0.04 50 0.0008
output$combined_data_tbl |>
tidy_combined_autoplot()