Distribution Statistics for Zero-Truncated Geometric
Source:R/stats-zt-geometric-tbl.R
util_zero_truncated_geometric_stats_tbl.Rd
Returns distribution statistics for Zero-Truncated Geometric distribution in a tibble.
Details
This function takes in a tibble generated by a tidy_ztgeom
distribution function and returns the relevant statistics for a Zero-Truncated
Geometric distribution. It requires data to be passed from a tidy_ztgeom
distribution function.
See also
Other Zero-Truncated Geometric:
util_zero_truncated_geometric_param_estimate()
Other Distribution Statistics:
util_bernoulli_stats_tbl()
,
util_beta_stats_tbl()
,
util_binomial_stats_tbl()
,
util_burr_stats_tbl()
,
util_cauchy_stats_tbl()
,
util_chisquare_stats_tbl()
,
util_exponential_stats_tbl()
,
util_f_stats_tbl()
,
util_gamma_stats_tbl()
,
util_generalized_beta_stats_tbl()
,
util_generalized_pareto_stats_tbl()
,
util_geometric_stats_tbl()
,
util_hypergeometric_stats_tbl()
,
util_inverse_burr_stats_tbl()
,
util_inverse_pareto_stats_tbl()
,
util_inverse_weibull_stats_tbl()
,
util_logistic_stats_tbl()
,
util_lognormal_stats_tbl()
,
util_negative_binomial_stats_tbl()
,
util_normal_stats_tbl()
,
util_paralogistic_stats_tbl()
,
util_pareto1_stats_tbl()
,
util_pareto_stats_tbl()
,
util_poisson_stats_tbl()
,
util_t_stats_tbl()
,
util_triangular_stats_tbl()
,
util_uniform_stats_tbl()
,
util_weibull_stats_tbl()
,
util_zero_truncated_binomial_stats_tbl()
,
util_zero_truncated_negative_binomial_stats_tbl()
,
util_zero_truncated_poisson_stats_tbl()
Examples
library(dplyr)
set.seed(123)
tidy_zero_truncated_geometric(.prob = 0.1) |>
util_zero_truncated_geometric_stats_tbl() |>
glimpse()
#> Rows: 1
#> Columns: 17
#> $ tidy_function <chr> "tidy_zero_truncated_geometric"
#> $ function_call <chr> "Zero Truncated Geometric c(0.1)"
#> $ distribution <chr> "Zero Truncated Geometric"
#> $ distribution_type <chr> "continuous"
#> $ points <dbl> 50
#> $ simulations <dbl> 1
#> $ mean <dbl> 10
#> $ mode <dbl> 1
#> $ range <chr> "1 to Inf"
#> $ std_dv <dbl> 9.486833
#> $ coeff_var <dbl> 0.9486833
#> $ skewness <dbl> 2.213594
#> $ kurtosis <dbl> 5.788889
#> $ computed_std_skew <dbl> 1.101906
#> $ computed_std_kurt <dbl> 3.712366
#> $ ci_lo <dbl> 1.225
#> $ ci_hi <dbl> 30.775