Skip to contents

This function estimates the shape and scale parameters of an inverse Pareto distribution from the provided data using maximum likelihood estimation, and then calculates the AIC value based on the fitted distribution.

Usage

util_inverse_pareto_aic(.x)

Arguments

.x

A numeric vector containing the data to be fitted to an inverse Pareto distribution.

Value

The AIC value calculated based on the fitted inverse Pareto distribution to the provided data.

Details

This function calculates the Akaike Information Criterion (AIC) for an inverse Pareto distribution fitted to the provided data.

This function fits an inverse Pareto distribution to the provided data using maximum likelihood estimation. It estimates the shape and scale parameters of the inverse Pareto distribution using maximum likelihood estimation. Then, it calculates the AIC value based on the fitted distribution.

Initial parameter estimates: The function uses the method of moments estimates as starting points for the shape and scale parameters of the inverse Pareto distribution.

Optimization method: The function uses the optim function for optimization. You might explore different optimization methods within optim for potentially better performance.

Goodness-of-fit: While AIC is a useful metric for model comparison, it's recommended to also assess the goodness-of-fit of the chosen model using visualization and other statistical tests.

Author

Steven P. Sanderson II, MPH

Examples

# Example 1: Calculate AIC for a sample dataset
set.seed(123)
x <- tidy_inverse_pareto(.n = 100, .shape = 2, .scale = 1)[["y"]]
util_inverse_pareto_aic(x)
#> [1] 555.1183